Conformational control of HCl co-transport: imidazole functionalised isophtalamide vs. 2,6-dicarboxamidopyridine

Philip A. Gale,*a Joachim Garric,a Mark E. Light,a Beth A. McNally,b and Bradley D. Smith* b

a School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. Fax: 44 2380596805; Tel: 44 23 80593332; E-mail: philip.gale@soton.ac.uk
b Department of Chemistry and Biochemistry, University of Notre Dame, IN 46556, USA. Fax: 1 574 631 6652; Tel: 1 574 631 8632; E-mail: smith.115@nd.edu

Synthesis of methyl 6-((1-methyl-1H-imidazol-2-yl)methylcarbamoyl)pyridine-2-carboxylate:

6-(Methoxycarbonyl)pyridine-2-carboxylic acid (1.60 g, 8.8 mmol, 1.0 equiv.) was activated by reaction with thionyl chloride (30.00 mL, 439.0 mmol, 50 equiv.) at 90°C. The solution was heated at reflux for 30 minutes, then the thionyl chloride removed under vacuum. The solid was dissolved in dry dichloromethane, triethylamine (2.45 mL, 17.5 mmol, 2.0 equiv.) and (1-methyl-1H-imidazol-2-yl)methanamine (1.170 g, 10.6 mmol, 1.2 equiv.) were added to the solution. The reaction mixture was stirred at room temperature for 12 hours. After hydrolysis the solution was washed with water. The organic phase was dried over MgSO_{4}, and concentrated. The residue was purified by column chromatography on silica using a mixture CH_{2}Cl_{2}/MeOH (93/7) to give 1.56 g (65% yield) of methyl 6-((1-methyl-1H-imidazol-2-yl)methylcarbamoyl)pyridine-2-carboxylate as a white powder.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2007
1H NMR (CDCl$_3$, 400 MHz) : $\delta = 0.93$ (3H, t, $J = 7.2$ Hz), 1.30-1.40 (2H, m), 1.64-1.54 (2H, m), 2.58 (2H, d, $J = 8.0$ Hz), 3.63 (3H, s), 4.71 (2H, d, $J = 5.6$ Hz), 6.76 (1H, s), 6.87 (1H, s), 7.13 (2H, d, $J = 8.0$ Hz), 7.44 (2H, d, $J = 8.0$ Hz), 8.03 (1H, t, $J = 8.0$ Hz), 8.35 (1H, d, $J = 8.0$ Hz), 8.41 (1H, d, $J = 8.0$ Hz), 9.87-9.89 (2H, m).

13C NMR (CDCl$_3$, 100 MHz): $\delta = 13.9$, 22.3, 32.8, 33.6, 35.1, 35.5, 120.7, 121.9, 125.0, 125.2, 127.0, 128.6, 134.9, 139.0, 139.4, 144.9, 148.5, 149.2, 161.2, 163.5. IR $\nu_{\text{max}} = 3312$, 2931, 1682, 1544, 747 cm$^{-1}$.

Analysis: Calcd for C$_{22}$H$_{25}$N$_5$O$_2$: C, 67.50; H, 6.44; N, 17.89; O, 8.17. Found C, 67.43; H, 6.53; N, 17.87.

Synthesis of N1-(4-butylphenyl)-N3-(2-mercaptothiazolide)-isophthalamide:

N1,N3-Bis(2-mercaptothiazolides)-isophthalamide (500 mg, 1.4 mmol, 1.0 equiv.) was dissolved in 10mL of dry CH$_2$Cl$_2$ and then 4-butylaniline (214 μL, 1.4 mmol, 1.0 equiv.) was added to the solution. The reaction mixture was stirred 3 days at room temperature. The solution was washed with 1M NaOH aqueous solution (3x10 mL). The organic phase was dried over MgSO$_4$, and concentrated. The residue was purified by column chromatography using a mixture CH$_2$Cl$_2$/AcOEt (98/2) on silica to give 110 mg (20% yield) of N1-(4-butylphenyl)-N3-(2-mercaptothiazolide)-isophthalamide as a yellow powder.

1H NMR (CDCl$_3$, 300 MHz) : $\delta = 0.93$ (3H, t, $J = 7.5$ Hz), 1.30-1.42 (2H, m), 1.55-1.65 (2H, m), 2.60 (2H, t, $J = 7.8$ Hz), 3.50 (2H, t, $J = 7.2$ Hz), 4.57 (2H, t, $J = 7.2$ Hz), 7.18 (2H, d, $J = 8.4$ Hz), 7.50-7.54 (3H, m), 7.81-7.86 (2H, m), 8.01 (1H, d, $J = 8.1$Hz), 8.15 (1H, s). **13C NMR (CDCl$_3$, 75 MHz):** $\delta = 13.0$, 22.3, 29.7, 33.6, 35.1, 56.5, 120.4, 127.9, 128.9, 129.0, 131.1, 132.4, 134.2, 135.2, 135.4, 139.6, 164.5, 170.4, 202.3. IR $\nu_{\text{max}} = 3330$, 3099, 2927, 1663, 1519, 1531, 643 cm$^{-1}$.

Analysis: Calcd for C$_{21}$H$_{22}$N$_2$O$_2$S$_2$: C, 63.29; H, 5.56; N, 7.03; O, 8.03; S, 16.09. Found C, 63.42; H, 5.72; N, 7.09.

Synthesis of compound N1-(4-butylphenyl)-N3-((1-methyl-1H-imidazol-2-yl)methyl)isophthalamide 4:

N1-(4-Butylphenyl)-N3-(2-mercaptothiazolide)-isophthalamide (100 mg, 2.5 mmol, 1.0 equiv.) was dissolved in 10mL of dry CH$_2$Cl$_2$ then (1-methyl-1H-imidazol-2-yl)methanamine (56 mg, 5.0 mmol, 2.0 equiv.) was added to the solution. The reaction mixture was stirred 3 days at room temperature. The solution was washed with 1M NaOH aqueous solution (3x10 mL). The organic phase was dried over MgSO$_4$, and concentrated. The residue was purified by column chromatography using a mixture CH$_2$Cl$_2$/AcOEt (93/7) on silica to give 90 mg (92% yield) of N1-(4-butylphenyl)-N3-((1-methyl-1H-imidazol-2-yl)methyl)isophthalamide 4 as a white powder.

1H NMR (CDCl$_3$, 300 MHz) : $\delta = 0.95$ (3H, t, $J = 7.5$ Hz), 1.34-1.41 (2H, m), 1.59-1.64 (2H, m), 2.61 (2H, d, $J = 7.5$ Hz), 3.51 (3H, s), 4.53 (2H, d, $J = 5.1$ Hz), 6.51 (1H, s), 6.90 (1H, s), 7.12-7.17 (3H, m), 7.54 (2H, d, $J = 7.4$ Hz), 7.68 (1H, d, $J = 7.5$ Hz), 7.76 (1H, d, $J = 7.5$ Hz), 8.12 (1H, s), 8.66 (1H, s), 10.98 (1H, br). **13C NMR (CDCl$_3$, 75 MHz):** $\delta = 13.9, 22.2, 32.8, 33.8, 35.1, 36.0, 120.8, 121.6, 124.1, 126.2, 128.4, 128.8, 130.5, 131.2, 132.5, 136.3, 136.34, 138.7, 145.8, 166.4, 167.3. IR $\nu_{\text{max}} = 3248$, 2925, 2850, 1667, 1531, 1531, 1322, 702 cm$^{-1}$.

Analysis: Calcd for C$_{23}$H$_{26}$N$_4$O$_2$: C, 70.75; H, 6.71; N, 14.34; O, 8.19. Found C, 70.40; H, 6.75; N, 14.25.
Synthesis of compound N_2N_6-bis(4-butylphenyl)pyridine-2,6-dicarboxamide 5:

Isophthaloyl dichloride (1.00 g, 4.9 mmol, 1.0 equiv.) was dissolved in 50 mL of dry THF, triethylamine (2.73 mL, 19.6 mmol, 4.0 equiv.) and 4-butylaniline (2.31 mL, 14.7 mmol, 3.0 equiv.) were added to the solution. The reaction mixture was stirred at room temperature for 12 hours and the solution subsequently was washed with water. The organic phase was dried over MgSO$_4$, and concentrated. The residue was purified by column chromatography using a mixture CH$_2$Cl$_2$/MeOH (96/4) to give 1.610 mg (77% yield) of compound 3 as a white powder. 1H NMR (CDCl$_3$, 300 MHz): δ = 0.94 (6H, t, J = 7.2 Hz); 1.31-1.43 (4H, m), 1.56-1.66 (4H, m); 2.62 (4H; J = 7.5 Hz), 7.20 (4H, d, J = 7.4 Hz), 7.64 (4H, d, J = 7.4 Hz), 8.10 (1H, t, J = 7.5 Hz), 8.47 (2H, d, J = 7.5 Hz), 9.48 (s, 2H). 13C NMR (CDCl$_3$, 75 MHz): δ = 13.9, 22.2, 33.6, 35.1, 120.2, 125.4, 129.1, 134.7, 139.5, 139.8, 149.1, 161.0. IR ν_{max} = 3299, 2927, 2856, 1661, 1522, 827 cm$^{-1}$. Anal: Calcd for C$_{27}$H$_{31}$N$_3$O$_2$: C, 75.5; H, 7.27; N, 9.78; O, 7.45. Found C, 75.55; H, 7.34; N, 9.80.

NMR spectra

Figure S 1: 1H NMR spectra of compound 3
Figure S 2: 13C NMR spectra of compound 3

Figure S 3: 1H NMR spectra of compound 4
Figure S 4 \(^{13}\)C NMR spectra of compound 4

Figure S 5 \(^1\)H NMR spectra of compound 5
Figure S 6 13C NMR spectra of compound 5
Binding studies:

![Figure S 7: Fit plot of NMR titration of compound 2 vs TBACl in DMSO-d$_6$](image)

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 15:38:10 on 01/29/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>9.18083E+00</td>
<td>2.000E-01</td>
<td>7.156E-01</td>
<td>1.599E+02</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.15555E+01</td>
<td>2.000E-01</td>
<td>1.012E-03</td>
<td>9.356E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.19947E+01</td>
<td>1.000E+00</td>
<td>2.077E-02</td>
<td>1.290E+02</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

ORMS ERROR = 1.60E-03 MAX ERROR = 2.97E-03 AT OBS.NO. 15
RESIDUALS SQUARED = 4.08E-05
RFACTOR = 0.0126 PERCENT
Figure S 8: plot of NMR titration of compound 2\cdotHPF$_6$ vs TBACl in DMSO-d_6

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 15:44:29 on 01/29/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.95559E+01</td>
<td>2.000E-01</td>
<td>1.112E+00</td>
<td>4.431E+01</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.15777E+01</td>
<td>2.000E-01</td>
<td>2.654E-03</td>
<td>6.610E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.24337E+01</td>
<td>1.000E+00</td>
<td>7.728E-03</td>
<td>2.598E+01</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

RMS ERROR = 2.86E-03 MAX ERROR = 4.64E-03 AT OBS.NO. 1
RESIDUALS SQUARED = 1.31E-04
RFACTOR = 0.0221 PERCENT
Figure S9: Fit plot of NMR titration of compound 3 vs TBACl in DMSO-d_6.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 17:39:09 on 02/13/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4.15001E+00</td>
<td>2.000E-01</td>
<td>1.477E+00</td>
<td>9.436E+02</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>9.94260E+00</td>
<td>2.000E-01</td>
<td>2.690E-03</td>
<td>7.617E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.06953E+01</td>
<td>1.000E+00</td>
<td>1.955E-01</td>
<td>8.392E+02</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

RMS ERROR = 3.14E-03 MAX ERROR = 6.46E-03 AT OBS.NO. 1
RESIDUALS SQUARED = 9.84E-05
RFACCTOR = 0.0274 PERCENT
Figure S 10: plot of NMR titration of compound 3•HF6 vs TBACl in DMSO-d6

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 14:57:26 on 01/29/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.89608E+01</td>
<td>2.000E-01</td>
<td>1.115E+00</td>
<td>3.232E+01</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.07340E+01</td>
<td>2.000E-01</td>
<td>1.429E-03</td>
<td>6.573E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.12550E+01</td>
<td>1.000E+00</td>
<td>2.629E-03</td>
<td>1.709E+01</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

RMS ERROR = 1.39E-03 MAX ERROR = 2.60E-03 AT OBS.NO. 14
RESIDUALS SQUARED = 3.11E-05
RFACTOR = 0.0117 PERCENT
Figure S 11: Fit plot of NMR titration of compound 4 vs TBACl in DMSO-\(d_6\)

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 18:46:36 on 01/31/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: \(M + L = ML\)
FILE: TEST11.FIT
IDEAL DATA: \(K_1 = 63.091\); \(\Delta M = 20.0\); \(\Delta ML = 120.0\)
File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.78799E+00</td>
<td>2.000E-01</td>
<td>5.645E-01</td>
<td>2.620E+02</td>
<td>(K_1)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.02810E+01</td>
<td>2.000E-01</td>
<td>1.217E-03</td>
<td>7.031E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.09708E+01</td>
<td>1.000E+00</td>
<td>3.160E-02</td>
<td>2.113E+02</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

\(\text{ORMS ERROR} = 1.71E-03\) \(\text{MAX ERROR} = 3.28E-03\) AT OBS.NO. 8
\(\text{RESIDUALS SQUARED} = 4.67E-05\)
\(\text{RFACTOR} = 0.0151\) PERCENT
Figure S 12: plot of NMR titration of compound 4•HPF$_6$ vs TBACl in DMSO-d_6

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 18:40:48 on 01/31/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)

Reaction: M + L = ML

FILE: TEST11.FIT

FILE DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0

File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.35579E+00</td>
<td>2.000E-01</td>
<td>5.634E-01</td>
<td>2.925E+02</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.02818E+01</td>
<td>2.000E-01</td>
<td>1.258E-03</td>
<td>7.687E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.09962E+01</td>
<td>1.000E+00</td>
<td>3.394E-02</td>
<td>2.350E+02</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

ORMS ERROR = 1.70E-03 **MAX ERROR = 3.13E-03 AT OBS.NO. 8**

RESIDUALS SQUARED = 4.60E-05

RFACCTOR = 0.0150 PERCENT
Figure S 13: Fit plot of NMR titration of compound 5 vs TBACl in DMSO-\textit{d}_6.

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 18:24:01 on 01/31/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7.22057E+00</td>
<td>2.000E-01</td>
<td>5.699E-01</td>
<td>4.560E+02</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.09451E+01</td>
<td>2.000E-01</td>
<td>1.464E-03</td>
<td>9.485E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.18653E+01</td>
<td>1.000E+00</td>
<td>4.786E-02</td>
<td>3.717E+02</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

\textbf{ORMS ERROR} = 1.79E-03 \quad \textbf{MAX ERROR} = 2.74E-03 AT OBS.NO. 7
\textbf{RESIDUALS SQUARED} = 5.15E-05
\textbf{RFACTOR} = 0.0149 PERCENT
Figure S 14: plot of NMR titration of compound 5•HPF₆ vs TBACl in DMSO-d₆

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes
Program run at 10:44:47 on 02/13/2007

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT)
Reaction: M + L = ML
FILE: TEST11.FIT
IDEAL DATA: K1 = 63.091; DELTA M = 20.0; DELTA ML = 120.0
File prepared by M. J. Hynes, October 22 2000

<table>
<thead>
<tr>
<th>NO.</th>
<th>A</th>
<th>PARAMETER</th>
<th>DELTA</th>
<th>ERROR</th>
<th>CONDITION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3.78485E+00</td>
<td>2.000E-01</td>
<td>4.381E-01</td>
<td>8.778E+02</td>
<td>K1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1.09443E+01</td>
<td>2.000E-01</td>
<td>1.391E-03</td>
<td>7.916E+00</td>
<td>SHIFT M</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1.22869E+01</td>
<td>1.000E+00</td>
<td>1.188E-01</td>
<td>7.736E+02</td>
<td>SHIFT ML</td>
</tr>
</tbody>
</table>

\[
\text{ORMS ERROR = 1.97E-03 MAX ERROR = 5.46E-03 AT OBS.NO. 15}
\]
\[
\text{RESIDUALS SQUARED = 6.22E-05}
\]
\[
\text{RFACTOR = 0.0164 PERCENT}
\]