Accurate Heteronuclear J-Coupling Measurements in Dilute Spin Systems using the multiple-quantum filtered J-resolved experiment

Charlotte Martineau, Franck Fayon, Christophe Legein, Jean-Yves Buzaré, Gilles Silly and Dominique Massiot

Electronic Supplementary Information

Table of contents

Table 1. Atom Wickoff multiplicity for $Pb_5Cr_3F_{19}$ (Space Group n°108 I4cm, a = 14.	.384 Å,
c = 7.408 Å).	1
Table 2. Selected F-Pb bond distances (≤ 4 Å) in Pb ₅ Cr ₃ F ₁₉ .	2
Table 3. Line labels, relative intensity (%), isotropic chemical shift δ_{iso} /ppm as deduce	ed from
the ²⁰⁷ Pb decoupled ¹⁹ F MAS NMR spectrum reconstruction and line attributions (ex	xpected
line intensity (%)) for $Pb_5Ga_3F_{19}$.	3
Figure 1. (a) experimental and (b) calculated ²⁰⁷ Pb decoupled ¹⁹ F MAS spectra of Pbg	5 Ga 3F19
at spinning rate 30 kHz.	3
Figure 2. ¹⁹ F- ²⁰⁷ Pb MAS (30 kHz) J-resolved spectra (a) without filtering, (b) with	h ²⁰⁷ Pb
single-quantum filtering and (c) with ²⁰⁷ Pb double-quantum filtering.	3
Figure 3. Cross-sections of the (a) 2D J-resolved, (b) ²⁰⁷ Pb single-quantum filter	red 2D
J-resolved and (c) ²⁰⁷ Pb double-quantum filtered 2D J-resolved MAS (30 kHz sp	pinning
frequency) spectra for some selected 19 F resonances of Pb ₅ Ga ₃ F ₁₉ .	4
Reference	4

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Table 1. Atom Wickoff multiplicity for $Pb_5Cr_3F_{19}^{-1}$ (Space Group n°108 I4cm, a = 14.384 Å, c = 7.408 Å).

Atom	Site
Pb1	16d
Pb2	4b
Cr1	8c
Cr2	4a
F1	16d
F2	16d
F3	16d
F4	8c
F5	8c
F6	8c
F7	4a

Table 2. Selected F-Pb bond distances (< 4 Å) in Pb₅Cr₃F₁₉.

F	Pb	d _{F-Pb}
F1 (unshared)	Pb1	2.4960
	Pb1	2.9311
	Pb1	3.3024
F2 (unshared)	Pb1	2.6189
	Pb1	2.6994
	Pb2	3.0239
F3 (unshared)	Pb1	2.1406
	Pb1	3.3879
	Pb1	3.4244
	Pb1	3.9140
F4 (unshared)	Pb1	2.5651
	Pb1	2.5651
F5 ("free")	Pb1	2.3558
	Pb1	2.3558
	Pb2	2.5222
	Pb2	3.5883
F6 (unshared)	Pb2	2.2671
	Pb2	2.4576
	Pb1	3.6189
	Pb1	3.6189
F7 (shared)	Pb1	3.4730
	Pb1	3.4730
	Pb1	3.4730
	Pb1	3.4730

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Table 3. Line labels, relative intensity (%), isotropic chemical shift δ_{iso} /ppm as deduced from the ²⁰⁷Pb decoupled ¹⁹F MAS NMR spectrum reconstruction and line attributions (expected line intensity (%)) for Pb₅Ga₃F₁₉.

Line	Relative intensity	δ_{iso}	Site (expected line intensity)
1	4.6	-135	F7 (5.3)
2	9.1	-119	F4 or F6 (10.5)
3	21.5	-110	F1 or F2 or F3 (21.0)
4	22.1	-105	F1 or F2 or F3 (21.0)
5	24.1	-96	F1 or F2 or F3 (21.0)
6	8.5	-75	F4 or F6 (10.5)
7	10.1	-28	F5 (10.5)

Figure 1. (a) experimental and (b) calculated 207 Pb decoupled 19 F MAS spectra of Pb₅Ga₃F₁₉ at spinning rate 30 kHz.

Figure 2. ¹⁹F-²⁰⁷Pb MAS (30 kHz) *J*-resolved spectra (a) without filtering, (b) with ²⁰⁷Pb single-quantum filtering and (c) with ²⁰⁷Pb double-quantum filtering.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2007

Figure 3. Cross-sections of the (a) 2D *J*-resolved, (b) 207 Pb single-quantum filtered 2D *J*-resolved and (c) 207 Pb double-quantum filtered 2D *J*-resolved MAS (30 kHz spinning frequency) spectra for some selected 19 F resonances of Pb₅Ga₃F₁₉.

Reference

1 J. Ravez, V. Andriamampianina, A. Simon, J. Grannec and S. C. Abrahams, J. Appl. Phys., 1991, **70**, 1331.