Ruthenium-Catalysed Double trans-Hydrosilylation of 1,4-Diarylbuta-1,3-diynes Leading to 2,5-Diarylsiloles

Takanori Matsuda, Sho Kadowaki and Masahiro Murakami*

Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan

General. All manipulations were carried out in a nitrogen-filled gloved box and with standard Schlenk techniques under an argon atmosphere. Column chromatography was performed with silica gel 60N (Kanto). Preparative thin-layer chromatography was performed with silica gel 60 PF254 (Merck). Gel permeation chromatography was carried out on a JAI LC-908. NMR spectra were recorded on a Varian Gemini 2000 (1H at 300.77 MHz and 13C NMR at 75.46 MHz), a JEOL JNM-A400 (11B at 128.15 MHz and 29Si at 79.30 Hz), or a JEOL JNM-ECA600 (13C NMR at 150.92 MHz). Proton chemical shifts were referenced to the residual proton signals in CDCl3 (δ 7.26 ppm) and C6D6 (δ 7.16 ppm). Carbon chemical shifts were referenced to the carbon signals in CDCl3 (δ 77.00 ppm) and C6D6 (δ 128.00 ppm). Boron and silicon chemical shifts were referenced to external standards BF3·OEt2 (δ 0.0 ppm) and SiMe4 (δ 0.0 ppm), respectively. High resolution mass spectra were recorded on a JEOL JMS-SX102A. UV-vis spectra were recorded on a JASCO V-550. Fluorescence spectra were recorded on a JASCO FP-777. Thermal data were obtained using an SII EXSTAR6000 DSC6220 at a heating rate 10 °C/min. The molecular weights of polymers were determined by gel permeation chromatography measured in CHCl3 at 40 °C with a system consisting of a TOSOH 8020 series and Shodex columns (K-805L and K-804L).

Materials. [Cp*Ru(MeCN)3]PF6 (1)1 and 9-Silafluorene (3d)2 were prepared according to literature procedures. 1,2-Dichloroethane was distilled from calcium hydride. All other reagents and solvents were used as received without further purification.

(1) B. Steinmetz and W. A. Schenk, Organometallics, 1999, 18, 943.
Preparation of 1,3-Diynes 2.

I. Palladium-Catalysed Homo-Coupling (for 2a, 2b, 2c, 2d, 2f, 2h, and 2k).

To a solution of ethynylbenzene (5.1 g, 50.0 mmol) in diisopropylamine (500 mL) were added PdCl2(PPh3)2 (0.70 g, 1.00 mmol, 2.0 mol %), CuI (0.19 g, 1.00 mmol, 2.0 mol %), and I2 (6.35 g, 25.0 mmol), and the reaction mixture was stirred at room temperature for 2 h. The precipitate was filtrated off, and the volatile materials were removed under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane) to give 1,4-diphenylbuta-1,3-diyne (2a, 3.06 g, 61%).

1,4-Bis[4-(trimethylsilyl)phenyl]buta-1,3-diyne (2h). 1H NMR (CDCl3) δ 0.27 (s, 18H), 7.49 (s, 8H); 13C NMR (CDCl3) δ –1.3, 74.3, 81.9, 122.0, 131.5, 133.2, 142.4; HRMS (EI) calcd for C22H26Si2 (M+) 346.1573, found 346.1573.

II. Eglinton Coupling (for 2e and 2g). A mixture of 1-bromo-3-ethynylbenzene (1.81 g, 10 mmol) and Cu(OAc)2·H2O (2.85 g, 14.3 mmol) in pyridine–MeOH (1:1, 10 mL) was heated under reflux for 2 h. After cooling to room temperature, the insoluble materials were filtered off. To the filtrate was added HCl aqueous solution, and extracted with Et2O. The extract was passed through a plug of Florisil® and evaporated. The residue was subjected to column chromatography on silica gel to afford 1,4-bis(3-bromophenyl)buta-1,3-diyne (2g, 0.95 g, 53%). 1H NMR (CDCl3) δ 7.18-7.27 (m, 2H), 7.46 (dt, J = 7.8, 1.2 Hz, 2H), 7.52 (dq, J = 7.8, 1.2 Hz, 2H), 7.67 (t, J = 1.7 Hz, 2H); 13C NMR (CDCl3) δ 74.8, 80.5, 122.2, 123.5, 129.8, 131.0, 132.5, 135.1; HRMS (EI) calcd for C16H8Br2 (M+) 357.8993, found 357.8994.

III. Glaser Coupling (for 2i). A mixture of 2-(3-ethynylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.82 g, 8.0 mmol) and CuCl (79 mg, 0.8 mmol) in pyridine (200 mL) was heated under an oxygen atmosphere at 40 °C for 2.5 h. The solvent was removed under reduced pressure. To the residue was added 3N HCl aqueous solution, and extracted with Et2O and CH2Cl2, dried over Na2SO4, and evaporated. The residue was subjected to column chromatography on silica gel to afford 1,4-bis[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]buta-1,3-diyne (2i, 0.57 g, 32%). 1H NMR (CDCl3) δ 1.35 (s, 24H), 7.34 (t, J = 7.8 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.78 (dd, J = 7.2, 0.9 Hz, 2H), 7.99 (s, 2H); 13C NMR (CDCl3) δ 24.9, 74.0, 81.4, 84.1, 121.4, 127.7, 134.9, 135.1, 138.9 [carbon attached to boron was not observed due to quadrupole broadening caused by the boron nucleus]; 11B NMR (CDCl3, 128.15 MHz) δ 30.5; HRMS (EI) calcd for C28H32B2O4 (M+) 454.2487, found 454.2489.

(4) [886-66-8].
(5) [20199-36-4].
(6) [22666-07-5].
(7) [22779-05-1].
(8) [55606-94-5].
(9) [2979-05-7].
(11) [217451-41-7].
IV. Hay Coupling\(^{13}\) (for 2j\(^{14}\))

To a suspension of CuCl (182 mg, 1.85 mmol) in DME (10 mL) was added TMEDA (322 mg, 0.41 mmol). After stirring at room temperature for 10 min, 3-ethynylthiophene (1.0 g, 9.24 mmol) was added, and the mixture was kept at 30–35 °C for 1 h while air was bubbled through the solution. The reaction was quenched with water, and the mixture was extracted with Et\(_2\)O. The organic layer was dried over MgSO\(_4\) and concentrated. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 10:1) to give 1,4-di(3-thienyl)buta-1,3-diynie (2j, 739 mg, 75%).

V. Cadiot–Chodkiewicz Coupling\(^{15}\) (for 2l\(^{16}\) and 6\(^{17}\)). To a solution of 1-ethynyl-4-vinylbenzene (1.40 g, 10.9 mmol) in MeOH–H\(_2\)O (2:1, 6.0 mL) was added n-butylamine (2.39 g, 32.7 mmol), CuCl (0.16 g, 1.64 mmol), and NH\(_2\)OH·HCl (0.23 g, 3.27 mmol) at room temperature. To the mixture was added slowly a solution of (bromoethynyl)benzene (1.97 g, 10.9 mmol) in MeOH (2.0 mL) at 0 °C. After stirring at room temperature for 24 h, the reaction was quenched with water, and the mixture was extracted with Et\(_2\)O. The organic layer was dried over MgSO\(_4\) and concentrated. The residue was purified by column chromatography on silica gel (hexane) to give 1-(phenylbuta-1,3-diynyl)-4-vinylbenzene (2l, 1.59 g, 70%).

VI. Sonogashira Coupling (for 2m\(^{18}\))

To a solution of 4-iodoanisole (947 mg, 4.05 mmol) in THF (10 mL) were added diisopropylamine (1.5 mL), buta-1,3-diynylbenzene\(^\text{19}\) (563 mg, 4.45 mmol), PdCl\(_2\)(PPh\(_3\))\(_2\) (142 mg, 0.203 mmol, 5.0 mol %), and CuI (77.3 mg, 0.406 mmol, 10 mol %), and the reaction mixture was stirred at room temperature for 10 h. The precipitate was filtered off, and the volatile materials were removed under reduced pressure. The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 10:1) to give 1-methoxy-4-(phenylbuta-1,3-diynyl)benzene (2m, 161 mg, 17%).

VII. Copper-Catalysed Cross-Coupling\(^{20}\) (for 2n).

A mixture of trimethyl(phenylethynyl)silane (1.33 g, 7.65 mmol), 1-(chloroethynyl)-4-(trifluoromethyl)benzene (2.43 g, 11.9 mmol), and CuCl (80 mg, 0.81 mmol) in DMF (45 mL) was heated at 120 °C for 1 day. The reaction was quenched with 3N HCl aqueous solution, and the mixture was extracted with Et\(_2\)O. The organic layer was washed with saturated NaHCO\(_3\) aqueous solution and brine, dried over MgSO\(_4\), and evaporated. An aliquot of the crude product was purified by GPC to give 1-(phenylbuta-1,3-diynyl)-4-(trifluoromethyl)benzene (2n). \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.32–7.40 (m, 3H), 7.53–7.56 (m, 2H), 7.60 (d, \(J = 8.9\) Hz, 2H), 7.63 (d, \(J = 8.9\) Hz, 2H); \(^{13}\)C NMR (CDCl\(_3\)) \(\delta\) 73.4, 76.2, 79.8, 82.8, 121.3, 123.7 \((^{1}J_{C-F} = 272.1\) Hz), 125.3 \((^{3}J_{C-F} = 3.5\) Hz), 125.7, 128.5 129.5, 130.7 \((^{2}J_{C-F} = 32.4\) Hz), 132.5, 132.7; HRMS (EI) ealed for

(14) [81294-14-6].
(16) [106643-22-5].
(17) [37902-13-9].
(18) [23429-36-9].
C_{17}H_{9}F_{3} (M^+) 270.0656, found 270.0657.

General Procedure for Ruthenium-Catalysed Double trans-Hydrosilylation of 1,3-Diynes

{\[
\begin{align*}
\text{Ph} & \quad \text{Ph} \\
\text{Ph} & \quad \text{Ph} \\
\text{2a} & \quad \text{3c} \\
\end{align*}
\]}

To a solution of [Cp*Ru(MeCN)\textsubscript{3}]PF\textsubscript{6} (1, 25.2 mg, 0.050 mmol) in 1,2-dichloroethane (1.5 mL) was added a solution of 1,4-diphenylbuta-1,3-diyne (2a, 50.6 mg, 0.250 mmol) and diphenylsilane (3c, 138.2 mg, 0.750 mmol) in 1,2-dichloroethane (1.0 mL). After being stirred under an argon atmosphere for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by thin-layer chromatography (hexane:AcOEt = 10:1) to give 1,1,2,5-tetraphenylsilole21 (4ac, 49.7 mg, 51%). Mp 169 °C. 1H NMR (CDCl\textsubscript{3}) \(\delta \) 7.13-7.27 (m, 6H), 7.32-7.44 (m, 10H), 7.49 (s, 2H), 7.67-7.72 (m, 4H); 13C NMR (CDCl\textsubscript{3}) \(\delta \) 126.8, 127.0, 128.4, 128.6, 130.2, 131.6, 135.8, 138.6, 140.3, 143.2; 29Si NMR (CDCl\textsubscript{3}, 79.30 MHz) \(\delta \) –9.2; HRMS (CI) calcd for C\textsubscript{28}H\textsubscript{22}Si (M+) 386.1491, found 386.1491.

2,5-Diphenylspiro[9-silafluorene-9,1'-silole] (4ad). The title compound (91.4 mg, 79%) was prepared from 2a (60.7 mg, 0.30 mmol) and 3d (164.1 mg, 0.90 mmol). Mp 197 °C. 1H NMR (CDCl\textsubscript{3}) \(\delta \) 7.07-7.18 (m, 10H), 7.21-7.28 (m, 2H), 7.53 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 7.2 Hz, 2H), 7.66 (s, 2H), 8.00 (d, J = 7.5 Hz, 2H); 13C NMR (CDCl\textsubscript{3}) \(\delta \) 121.5, 126.4, 127.1, 128.1, 128.5, 131.2, 132.4, 134.1, 137.8, 138.4, 141.7, 149.3; HRMS (EI) calcd for C\textsubscript{28}H\textsubscript{20}Si (M+) 384.1334, found 384.1334.

1-Methyl-1,2,5-triphenylsilole (4ab).22 To a solution of [Cp*Ru(MeCN)\textsubscript{3}]PF\textsubscript{6} (30.3 mg, 0.060 mmol) in 1,2-dichloroethane (1.5 mL) was added a solution of 1a (60.7 mg, 0.30 mmol) and chloro(phenyl)silane (128.4 mg, 0.90 mmol) in 1,2-dichloroethane (1.5 mL). After being stirred under an argon atmosphere for 10 h at room temperature, the solvent was removed under reduced pressure to give crude 1-chloro-1,2,5-triphenylsilole (4ae). To a solution of 4ae in Et\textsubscript{2}O was added slowly methylthiium (2.2 M in Et\textsubscript{2}O, 0.61 mL) at –78 °C, and the reaction was allowed to warm to room temperature. After 12 h, the reaction was quenched with a Na\textsubscript{2}HPO\textsubscript{4}–NaH\textsubscript{2}PO\textsubscript{4} buffer (pH = 6.8), and the mixture was extracted with Et\textsubscript{2}O, dried over MgSO\textsubscript{4}, and concentrated. The residue was purified by thin-layer chromatography (hexane:AcOEt = 20:1) to give 1-methyl-1,2,5-triphenylsilole (4ab, 59.8 mg, 61%). Mp 74 °C. 1H NMR (CDCl\textsubscript{3}) \(\delta \) 0.82 (s, 3H), 7.14-7.28 (m, 5H), 7.33-7.44 (m, 8H), 7.43 (s, 2H), 7.64-7.68 (m, 2H); 13C NMR (CDCl\textsubscript{3}) \(\delta \) –5.6, 126.3, 126.9, 128.3, 128.6, 129.9, 133.4, 134.4, 138.5, 139.2, 144.0; HRMS (CI) calcd for C\textsubscript{23}H\textsubscript{20}Si (M+) 324.1334, found 324.1334.

\(^{(21)} \) [51531-22-7].
\(^{(22)} \) [49538-70-7].
1-Ethynyl-1,2,5-triphenylsilole (5). The title compound was obtained in 40% analogously by the reaction of 4ae with ethynylmagnesium bromide (0.5 M in THF). Mp 98 °C. 1H NMR (CDCl$_3$) δ 2.78 (s, 1H), 7.15-7.22 (m, 2H), 7.23-7.41 (m, 7H), 7.45 (s, 2H), 7.49 (d, $J = 7.7$ Hz, 4H), 7.77 (dd, $J = 7.7$, 1.4 Hz, 2H); 13C NMR (CDCl$_3$) δ 82.4, 98.7, 126.7, 127.4, 128.4, 128.6, 129.7, 130.6, 134.8, 137.4, 140.5, 140.6; HRMS (EI) calcd for C$_{24}$H$_{18}$Si (M$^+$) 334.1178, found 334.1175.

1,2,5-Triphenylsilole. The title compound was isolated in 30% as a by-product of the ethynylation reaction. 1H NMR (CDCl$_3$) δ 5.46 (s, 1H), 7.14-7.44 (m, 15H), 7.65-7.68 (m, 2H); 13C NMR (CDCl$_3$) δ 126.7, 127.2, 128.5, 128.6, 130.3, 130.5, 135.5, 138.2, 140.5, 141.6; HRMS (EI) calcd for C$_{22}$H$_{18}$Si (M$^+$) 310.1178, found 310.1182.

2',5'-Di(2-naphthyl)spiro[9-silafluorene-9,1'-silole] (4bd). The title compound (42.7 mg, 59%) was prepared from 2b (45.4 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp 201 °C. 1H NMR (CDCl$_3$) δ 7.14-7.44 (m, 15H), 7.65-7.68 (m, 2H); 13C NMR (CDCl$_3$) δ 126.7, 127.2, 128.5, 128.6, 130.3, 130.5, 135.5, 138.2, 140.5, 141.6; HRMS (EI) calcd for C$_{36}$H$_{24}$Si (M$^+$) 484.1647, found 484.1648.

2,5'-Di(2-naphthyl)-1,1-diphenylsilole (4bc). The title compound (107.3 mg, 55%) was prepared from 2b (120.9 mg, 0.40 mmol) and 3c (221.2 mg, 1.20 mmol). Mp 106 °C. 1H NMR (CDCl$_3$) δ 7.32-7.46 (m, 10H), 7.62-7.81 (m, 16H); 13C NMR (CDCl$_3$) δ 124.6, 125.6, 126.0, 126.4, 127.5, 128.1, 128.2, 128.4, 130.3, 131.7, 132.7, 133.7, 135.9, 136.2, 140.8, 143.4 [one carbon missing due to overlap]; HRMS (EI) calcd for C$_{36}$H$_{26}$Si (M$^+$) 486.1804, found 486.1809.

2',5'-Bis(4-methylphenyl)spiro[9-silafluorene-9,1'-silole] (4cd). The title compound (47.8 mg, 77%) was prepared from 2c (34.5 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp 210 °C. 1H NMR (CDCl$_3$) δ 2.22 (s, 6H), 6.93 (d, $J = 8.3$ Hz, 4H), 7.06
(d, $J = 8.3$ Hz, 4H), 7.24 (t, $J = 7.2$ Hz, 2H), 7.52 (dt, $J = 7.5, 1.2$ Hz, 4H), 7.61 (s, 2H), 8.00 (d, $J = 7.8$ Hz, 2H); 13C NMR (CDCl$_3$) δ21.1, 121.4, 126.2, 128.0, 129.2, 131.0, 132.7, 134.1, 135.1, 136.8, 137.7, 140.8, 149.2; HRMS (EI) calcd for C$_{30}$H$_{24}$Si (M$^+$) 412.1647, found 412.1647.

2,5-Bis(4-methylphenyl)-1,1-diphenylsilole (4cc). The title compound (54.2 mg, 65%) was prepared from 2c (46.1 mg, 0.20 mmol) and 3c (110.6 mg, 0.60 mmol). Mp 147 °C. 1H NMR (CDCl$_3$) δ2.28 (s, 6H), 7.03 (d, $J = 8.1$ Hz, 4H), 7.28-7.41 (m, 10H), 7.44 (s, 2H), 7.67-7.70 (m, 4H); 13C NMR (CDCl$_3$) δ21.2, 126.6, 128.3, 129.3, 130.1, 131.9, 135.8, 136.8, 139.5, 142.5, [one carbon missing due to overlap]; HRMS (EI) calcd for C$_{30}$H$_{26}$Si (M$^+$) 414.1804, found 414.1803.

2',5'-Bis(4-methoxyphenyl)spiro[9-silafluorene-9,1'-silole] (4dd). The title compound (52.2 mg, 78%) was prepared from 2d (39.3 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp 167 °C. 1H NMR (CDCl$_3$) δ3.66 (s, 6H), 6.63 (d, $J = 8.4$ Hz, 4H), 7.06 (d, $J = 8.4$ Hz, 4H), 7.22 (t, $J = 7.2$ Hz, 2H), 7.46-7.54 (m, 4H), 7.58 (dd, $J = 6.9, 0.6$ Hz, 2H), 7.98 (d, $J = 8.1$ Hz, 2H); 13C NMR (CDCl$_3$) δ55.1, 114.0, 121.4, 127.4, 128.0, 130.8, 131.1, 133.0, 134.1, 136.5, 139.8, 149.2, 158.7; HRMS (EI) calcd for C$_{30}$H$_{24}$O$_2$Si (M$^+$) 444.1546, found 444.1548.

2,5-Bis(4-methoxyphenyl)-1,1-diphenylsilole (4dc). The title compound (66.9 mg, 75%) was prepared from 2d (52.5 mg, 0.20 mmol) and 3c (110.6 mg, 0.60 mmol). Mp 207 °C. 1H NMR (CDCl$_3$) δ3.76 (s, 6H), 6.75-6.81 (m, 4H), 7.32-7.42 (m, 12H), 7.69 (d, $J = 8.4$ Hz, 4H); 13C NMR (CDCl$_3$) δ55.2, 114.0, 127.8, 128.3, 130.1, 131.5, 132.0, 135.8, 138.5, 141.4, 158.7; HRMS (EI) calcd for C$_{30}$H$_{26}$O$_2$Si (M$^+$) 446.1702, found 446.1703.

2',5'-Bis(4-acethylphenyl)spiro[9-silafluorene-9,1'-silole] (4ed). The title compound (35.4 mg, 25%) was prepared from 2e (85.9 mg, 0.30 mmol) and 3d (164.1 mg, 0.90 mmol). Mp 221 °C. 1H NMR (CDCl$_3$) δ2.46 (s, 6H), 7.19 (d, $J = 8.1$ Hz, 4H), 7.24-7.28 (m, 2H), 7.52-7.57 (m, 4H), 7.70 (d, $J = 8.4$ Hz, 4H), 7.76 (s, 2H), 8.00 (d, $J = 8.4$ Hz, 2H); 13C NMR (CDCl$_3$) δ26.4, 121.8, 126.5, 128.3, 128.8, 131.2, 131.7, 134.0, 135.6, 139.1, 142.1, 143.8, 149.3, 197.2; HRMS (FAB) calcd for C$_{32}$H$_{24}$O$_2$Si (M$^+$) 468.1546, found 468.1547.
2',5'-Bis(4-fluorophenyl)spiro[9-silafuorene-9,1'-silole] (4fd). The title compound (41.1 mg, 65%) was prepared from 2f (35.7 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp 173 °C. 1H NMR (CDCl$_3$) δ 6.79 (t, $J = 8.7$ Hz, 4H), 7.06-7.11 (m, 4H), 7.25 (t, $J = 7.4$ Hz, 2H), 7.49-7.59 (m, 6H), 7.99 (d, $J = 7.8$ Hz, 2H); 13C NMR (CDCl$_3$) δ 115.5 (2J$_{C-F} = 22.0$ Hz), 121.6, 127.8 (3J$_{C-F} = 8.1$ Hz), 128.2, 131.4, 132.0, 133.9 (4J$_{C-F} = 3.5$ Hz), 134.0, 137.1, 141.2, 149.3, 161.9 (2J$_{C-F} = 247.0$ Hz); HRMS (EI) calcd for C$_{28}$H$_{18}$F$_2$Si (M$^+$) 420.1146, found 420.1147.

2',5'-Bis(3-bromophenyl)spiro[9-silafuorene-9,1'-silole] (4gd). The title compound (77.3 mg, 71%) was prepared from 2g (72.6 mg, 0.20 mmol) and 3d (109.4 mg, 0.60 mmol). Mp 157 °C. 1H NMR (CDCl$_3$) δ 6.81 (d, $J = 7.5$ Hz, 2H), 6.89 (t, $J = 8.0$ Hz, 2H), 7.18 (dd, $J = 8.1$, 0.9 Hz, 2H), 7.23-7.28 (m, 2H), 7.45 (s, 2H), 7.53 (t, $J = 8.1$ Hz, 4H), 7.60 (s, 2H), 7.98 (d, $J = 7.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 121.7, 122.7, 125.9, 128.3, 128.4, 130.0, 130.1, 131.2, 131.6, 134.0, 137.9, 139.7, 142.6, 149.4; HRMS (EI) calcd for C$_{28}$H$_{18}$Br$_2$Si (M$^+$) 539.9545, found 539.9543.

2',5'-Bis[4-(trimethylsilyl)phenyl]spiro[9-silafuorene-9,1'-silole] (4hd). The title compound (49.2 mg, 62%) was prepared from 2h (52.0 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp 203 °C. 1H NMR (CDCl$_3$) δ 0.18 (s, 18H), 7.14 (d, $J = 8.4$ Hz, 4H), 7.20-7.30 (m, 6H), 7.48-7.58 (m, 4H), 7.68 (s, 2H), 8.00 (d, $J = 7.8$ Hz, 2H); 13C NMR (CDCl$_3$) δ –1.2, 121.5, 125.6, 128.1, 131.2, 132.5, 133.6, 134.1, 138.2, 138.5, 139.3, 142.0, 149.3; HRMS (EI) calcd for C$_{34}$H$_{36}$Si$_3$ (M$^+$) 528.2125, found 528.2125.

2',5'-Bis[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]spiro[9-silafuorene-9,1'-silole] (4id). The title compound (92.2 mg, 72%) was prepared from 2i (90.8 mg, 0.20 mmol) and 3d (109.4 mg, 0.60 mmol). Mp 203 °C. 1H NMR (CDCl$_3$) δ 1.30 (s, 24H), 6.89 (d, $J = 7.4$ Hz, 2H), 6.99 (t, $J = 7.5$ Hz, 2H), 7.20 (t, $J = 7.2$ Hz, 2H), 7.46-7.55 (m, 6H), 7.69 (s, 2H), 7.89 (s, 2H), 7.80 (d, $J = 7.8$ Hz, 2H); 13C NMR (CDCl$_3$) δ –1.2, 121.5, 125.5, 128.1, 131.2, 132.5, 133.6, 134.1, 138.2, 138.5, 139.3, 142.0, 149.3; HRMS (EI) calcd for C$_{40}$H$_{42}$B$_2$O$_4$Si (M$^+$) 636.3038, found 636.3042.
2',5'-Di(3-thienyl)spiro[9-silafluorene-9,1'-silole] (4jd). The title compound (45.2 mg, 76%) was prepared from 2j (32.1 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp 233 °C. 1H NMR (CDCl$_3$) δ 6.60-6.65 (m, 2H), 7.11-7.16 (m, 4H), 7.26 (t, $J = 7.2$ Hz, 2H), 7.44 (s, 2H), 7.54 (t, $J = 7.7$ Hz, 2H), 7.60 (d, $J = 6.9$ Hz, 2H), 7.99 (d, $J = 7.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 121.4, 121.8, 125.0, 125.7, 128.1, 131.4, 131.7, 132.5, 132.2, 134.3, 139.6, 141.0, 149.3; HRMS (EI) calcd for C$_{24}$H$_{16}$S$_2$Si (M$^+$) 396.0463, found 396.0463.

1,1-Diphenyl-2,5-di(3-thienyl)silole (4jc). The title compound (80.2 mg, 67%) was prepared from 2j (64.3 mg, 0.30 mmol) and 3e (165.9 mg, 0.90 mmol). Mp 146 °C. 1H NMR (CDCl$_3$) δ 7.04-7.05 (m, 2H), 7.23-7.27 (m, 4H), 7.30 (s, 2H), 7.33-7.43 (m, 6H), 7.67-7.70 (m, 4H); 13C NMR (CDCl$_3$) δ 121.8, 125.5, 125.6, 128.4, 130.3, 131.3, 135.9, 136.5, 139.7, 140.5; HRMS (EI) calcd for C$_{24}$H$_{18}$S$_2$Si (M$^+$) 398.0619, found 398.0617.

2',5'-Dicyclohexenylspiro[9-silafluorene-9,1'-silole] (4kd). The title compound (39.4 mg, 50%) was prepared from 2k (42.1 mg, 0.20 mmol) and 3d (109.4 mg, 0.60 mmol) as oil. 1H NMR (CDCl$_3$) δ 1.39-1.46 (m, 4H), 1.56-1.62 (m, 4H), 1.70-1.79 (m, 4H), 2.14-2.22 (m, 4H), 5.08 (t, $J = 3.6$ Hz, 2H), 6.91 (s, 2H), 7.22-7.30 (m, 2H), 7.46 (t, $J = 7.7$ Hz, 2H), 7.56 (d, $J = 6.3$ Hz, 2H), 7.89 (d, $J = 8.1$ Hz, 2H); 13C NMR (CDCl$_3$) δ 22.3, 22.6, 25.7, 26.2, 121.1, 127.6, 129.1, 130.4, 130.7, 133.8, 135.1, 135.7, 138.0, 148.6; HRMS (EI) calcd for C$_{28}$H$_{28}$Si (M$^+$) 392.1960, found 392.1958.

2'-Phenyl-5'-(4-vinylphenyl)spiro[9-silafluorene-9,1'-silole] (4ld). The title compound (38.7 mg, 63%) was prepared from 2l (34.2 mg, 0.15 mmol) and 3d (82.0 mg, 0.45 mmol). Mp (decomp.) 89 °C. 1H NMR (CDCl$_3$) δ 5.12 (d, $J = 11.0$ Hz, 1H), 5.60 (d, $J = 17.6$ Hz, 1H), 6.56 (dd, $J = 17.6$, 11.1 Hz, 1H), 7.05-7.16 (m, 9H), 7.23 (t, $J = 7.5$ Hz, 2H), 7.47-7.59 (m, 4H), 7.64 (s, 2H), 7.98 (d, $J = 7.8$ Hz, 2H); 13C NMR (CDCl$_3$) δ 113.4, 120.9, 121.5, 126.40, 126.44, 126.5, 127.1, 128.1, 128.6, 131.2, 132.4, 134.1, 136.3, 137.3, 137.8, 138.1, 138.4, 141.4, 141.8, 149.3; HRMS (EI) calcd for C$_{30}$H$_{28}$Si (M$^+$) 410.1491, found 410.1490.

2-(4-Methoxyphenyl)-5-phenylspiro[9-silafluorene-9,1'-silole] (4md). The title
compound (33.4 mg, 56%) was prepared from 2m (33.2 mg, 0.14 mmol) and 3d (78.2 mg, 0.43 mmol) as oil. 1H NMR (CDCl$_3$) δ 3.66 (s, 3H), 6.63 (d, $J = 8.7$ Hz, 2H), 7.03-7.15 (m, 7H), 7.22 (t, $J = 7.1$ Hz, 2H), 7.46-7.64 (m, 6H), 7.98 (d, $J = 7.8$ Hz, 2H); 13C NMR (CDCl$_3$) δ 55.1, 114.1, 121.5, 126.3, 126.8, 127.6, 128.1, 128.5, 130.6, 131.1, 132.7, 134.1, 137.0, 137.9, 139.4, 142.1, 149.2, 158.8 [one carbon missing due to overlap]; HRMS (EI) calcd for C$_{29}$H$_{22}$OSi (M$^+$) 414.1440, found 414.1440.

2'-Phenyl-5'-(4-(trifluoromethyl)phenyl]spiro[9-silafluorene-9,1'-silole] (4nd). The title compound (62.1 mg, 69%) was prepared from 2n (54.1 mg, 0.20 mmol) and 3d (109.4 mg, 0.60 mmol). Mp 74 °C. 1H NMR (CDCl$_3$) δ 7.08-7.24 (m, 9H), 7.33 (d, $J = 8.1$ Hz, 2H), 7.50-7.57 (m, 4H), 7.62-7.72 (m, 2H), 7.98 (d, $J = 7.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 121.7, 124.1 (1J$_{C-F} = 271.8$ Hz), 125.5 (3J$_{C-F} = 3.8$ Hz), 126.4, 126.5, 127.5, 128.2, 128.6, 131.5, 131.7, 134.0, 137.1, 137.5, 140.0, 141.3, 144.0, 149.3 [one carbon (ipso to CF$_3$) missing due to overlap]; HRMS (EI) calcd for C$_{29}$H$_{19}$F$_3$Si (M$^+$) 452.1208, found 452.1209.

1,3-Bis(2'-phenylspiro[9-silafluorene-9,1'-silole]-5'-yl)benzene (7). The title compound (133.3 mg, 72%) was prepared from 6 (87.5 mg, 0.27 mmol) and 3d (293.5 mg, 1.6 mmol). Mp (decomp.) 232 °C. 1H NMR (CDCl$_3$) δ 6.64-6.71 (m, 2H), 7.02-7.15 (m, 10H), 7.15-7.25 (m, 8H), 7.46-7.56 (m, 10H), 7.99 (d, $J = 7.8$ Hz, 4H); 13C NMR (CDCl$_3$) δ 121.4, 123.4, 125.7, 126.4, 127.0, 128.1, 128.5, 128.9, 131.2, 132.5, 134.1, 137.7, 137.8, 138.1, 138.2, 141.4, 141.8, 149.2; HRMS (EI) calcd for C$_{50}$H$_{34}$Si$_2$ (M$^+$) 690.2199, found 690.2198.

Polymerization of 4id with 8.

To a solution of Pd(PPh$_3$)$_4$ (1.3 mg, 1.2 µmol) in toluene (0.57 mL) were added 1,4-dibromo-2,5-bis(decyloxy)benzene (8, 63.8 mg, 0.116 mmol), 4id (74.0 mg, 0.116 mmol), K$_2$CO$_3$ (48.1 mg, 0.348 mmol), and water (0.038 mL). After being stirred at 110 °C for 1 week, the reaction mixture was poured into an excess of MeOH. The precipitate was collected by filtration, washed with MeOH, and dried under vacuum to give black polymer 9 (89.6 mg, 99%). 1H NMR (CDCl$_3$) δ 0.78-0.91 (br, 6H), 1.03-1.30 (br, 24H), 1.32-1.46 (br, 4H), 1.61-1.78 (br, 4H), 3.74-4.05 (br, 4H), 6.57-6.86 (m, 3H), 6.90-7.12 (br, 4H), 7.14-7.57 (br, 11H), 7.64-7.74 (br, 2H). $M_n = 4.66 \times 10^3$, $M_w = 1.66 \times 10^4$, $M_w/M_n = 3.57$.

S9
Reaction of 10.

To a solution of \([\text{Cp}^*\text{Ru(MeCN)}_3]\)PF\(_6\) (20.2 mg, 0.040 mmol) in 1,2-dichloroethane (0.5 mL) was added a solution of diphenyl[2-(phenylethynyl)phenyl]silane\(^{24}\) (10, 72.1 mg, 0.200 mmol) in 1,2-dichloroethane (1.5 mL). After being stirred for 10 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by thin layer chromatography (hexane:AcOEt = 10:1) to give 1,1,2-triphenyl-1-silaindene\(^{25}\) (11, 51.9 mg, 72%). Mp (decomp.) 97 °C. \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 7.19-7.46 (m, 12H), 7.52-7.55 (m, 2H), 7.62-7.70 (m, 5H), 7.77 (s, 1H); \(^13\)C NMR (CDCl\(_3\)) \(\delta\) 124.7, 127.0, 127.2, 128.2, 128.6, 130.2, 130.5, 132.1, 132.9, 135.7, 136.1, 138.9, 142.8, 143.8, 149.6 [one carbon missing due to overlap]; HRMS (EI) calcd for C\(_{26}\)H\(_{20}\)Si (M\(^+\)) 360.1334, found 360.1334.

\(^{24}\) [141240-76-8].
\(^{25}\) [141240-81-5].
Table. Photophysical and Thermal Properties of Siloles

<table>
<thead>
<tr>
<th></th>
<th>Structure</th>
<th>(\lambda_{\text{abs}}) (nm)</th>
<th>(\log \varepsilon)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>(\Phi_F)</th>
<th>(T_g) (°C)</th>
<th>(T_m) (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4ac</td>
<td>Ph<sub>2</sub>Si<sub>2</sub>Ph</td>
<td>382</td>
<td>4.26</td>
<td>467</td>
<td>0.64</td>
<td>35</td>
<td>169</td>
</tr>
<tr>
<td>4ad</td>
<td>Si<sub>3</sub></td>
<td>391</td>
<td>4.12</td>
<td>490</td>
<td>0.35</td>
<td>65</td>
<td>197</td>
</tr>
<tr>
<td>4bd</td>
<td>Si<sub>4</sub></td>
<td>418</td>
<td>4.29</td>
<td>510</td>
<td>0.16</td>
<td>83</td>
<td>201</td>
</tr>
<tr>
<td>4cd</td>
<td>Si<sub>4</sub> – Me<sub>2</sub></td>
<td>–</td>
<td>–</td>
<td>501</td>
<td>0.11</td>
<td>70</td>
<td>210</td>
</tr>
<tr>
<td>4dd</td>
<td>Si<sub>4</sub> – MeO<sub>2</sub></td>
<td>414</td>
<td>4.05</td>
<td>513</td>
<td>0.07</td>
<td>81</td>
<td>167</td>
</tr>
<tr>
<td>4ed</td>
<td>Si<sub>4</sub> – Me<sub>2</sub>O<sub>2</sub></td>
<td>411</td>
<td>4.22</td>
<td>501</td>
<td>0.30</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4gd</td>
<td>Si<sub>4</sub> – Br<sub>2</sub></td>
<td>390</td>
<td>4.24</td>
<td>488</td>
<td>0.65</td>
<td>52</td>
<td>157</td>
</tr>
<tr>
<td>4hd</td>
<td>Si<sub>4</sub> – Me<sub>3</sub>Si<sub>2</sub></td>
<td>401</td>
<td>4.34</td>
<td>500</td>
<td>0.31</td>
<td>90</td>
<td>203</td>
</tr>
<tr>
<td>4jd</td>
<td>Si<sub>4</sub> – S<sub>2</sub></td>
<td>398</td>
<td>3.95</td>
<td>493</td>
<td>0.26</td>
<td>81</td>
<td>233</td>
</tr>
<tr>
<td>4nd</td>
<td>Si<sub>2</sub> – CF<sub>3</sub></td>
<td>391</td>
<td>4.14</td>
<td>496</td>
<td>0.26</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>Ph<sub>2</sub>Si<sub>2</sub>Ph</td>
<td>396</td>
<td>4.33</td>
<td>494</td>
<td>0.29</td>
<td>–<sup>c</sup></td>
<td>–<sup>c</sup></td>
</tr>
</tbody>
</table>

^a Measured in CHCl₃. ^b Measured in hexane. Determined with reference to quinine sulfate in 0.1 N H₂SO₄ and anthracene in EtOH (excited at 250 nm). ^c Decomposed.