Charge transfer induced enhancement of near IR two-photon absorption of 5,15-bis(azulenylethynyl) zinc(II) porphyrins

Kil Suk Kim, a Su Bum Noh, a Takayuki Katsuda, b Shuji Ito, c Atsuhiro Osuka*, b and Dongho Kim*, a

 a Department of Chemistry, Yonsei University, Seoul 120-749, Korea
 b Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
 c Department of Material Science and Technology, Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan.

*To whom it may correspondence should be addressed.
E-mail: osuka@kuchem.kyoto-u.ac.jp; dongho@yonsei.ac.kr
Two-photon Absorption Cross-Section (\(\sigma^{(2)}\)). The TPA experiments were performed using the open-aperture Z-scan method (Figure S1) with 130 fs pulses from an optical parametric amplifier (Light Conversion, TOPAS) operating at a 5 kHz repetition rate using a Ti:sapphire regenerative amplifier system (Spectra-Physics, Hurricane). The laser beam was divided into two parts. One was monitored by a Ge/PN photodiode (New Focus) as intensity reference, and the other was used for the transmittance studies. After passing through an \(f = 10\) cm lens, the laser beam was focused and passed through a quartz cell. The position of the sample cell could be varied along the laser-beam direction (z-axis), so the local power density within the sample cell could be changed under a constant laser power level. The thickness of the cell was 1 mm. The transmitted laser beam from the sample cell was then probed using the same photodiode as used for reference monitoring. The on-axis peak intensity of the incident pulses at the focal point, \(I_o\), ranged from 40 to 60 GW/cm. Assuming a Gaussian beam profile, the nonlinear absorption coefficient \(\beta\) can be obtained by curve fitting to the observed open aperture traces with the following equation:

\[
T(z) = 1 - \frac{\beta I_o (1 - e^{-\alpha_o})}{2\alpha_o (1 + (z/z_o)^2)},
\]

where \(\alpha_o\) is the linear absorption coefficient, \(l\) the sample length, and \(z_o\) the diffraction length of the incident beam. After obtaining the nonlinear absorption coefficient \(\beta\), the TPA cross-section \(\sigma^{(2)}\) (in units of 1 GM = 10\(^{-50}\) cm\(^4\)-s/photon-molecule) of a single solute molecule sample can be determined by using the following relationship:
\[\beta = \frac{8N_A d \times 10^{-3}}{h \nu}, \]

where \(N_A \) is the Avogadro constant, \(d \) the concentration of the TPA compound in solution, \(h \) is Planck’s constant, and \(\nu \) is the frequency of the incident laser beam. So as to satisfy the condition of \(a_0 l \ll 1 \), which allows the pure TPA \(\sigma^{(2)} \) values to be determined using a simulation procedure, the TPA cross-section value of AF-50 was measured as a reference compound; this control was found to exhibit a TPA value of 50 GM at 800 nm.

Figure S1. Schematic diagram of femtosecond open-aperture Z-scan set-up