Exceptional Performance of Sulfonic Acid-Incorporated-MCM-41 Mesoporous Materials Prepared using a Silane Containing Polysulfide Linkages in the Acetylation of Anisole

OZoon Kwon, SeMin Park and Gon Seo*

Electronic Supplementary Information

Fig. S1. Adsorption-desorption isotherms of nitrogen on TESPT-x-MCM and MPTES-x-MCM catalysts.

Fig. S2. 13C NMR spectra of the TESPT-20-MCM (A) before oxidation (δ= 9.81, 16.6, 28.72, 52.48 ppm) and (B) after oxidation (δ= 9.81, 17.09, 52.96 ppm).

Fig. S3. 29Si MAS NMR spectra of (A) TESTP-30-MCM (δ= -111, -102, -66, -59 ppm) and (B) MPTES-30-MCM (δ= -111, -102, -66, -59 ppm) catalysts.
Fig. S1. Adsorption-desorption isotherms of nitrogen on TESPT-x-MCM and MPTES-x-MCM catalysts.
Fig. S2. 13C NMR spectra of the TESPT-20-MCM (A) before oxidation ($\delta = 9.81, 16.6, 28.72, 52.48$ ppm) and (B) after oxidation ($\delta = 9.81, 17.09, 52.96$ ppm).
Fig. S3. ^{29}Si MAS NMR spectra of (A) TESTP-30-MCM (δ= -111, -102, -66, -59 ppm) and (B) MPTES-30-MCM (δ= -111, -102, -66, -59 ppm) catalysts.