SUPPLEMENTARY INFORMATION

Target-selective degradation of proteins by a light-activated 2-phenylquinoline-estradiol hybrid

Akane Suzuki, Kana Tsumura, Takeo Tsuzuki, Shuichi Matsumura and Kazunobu Toshima*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan

Chemical synthesis.

General Procedures: 17α-ethynyl-β-estradiol (1) and 2-phenylquinoline-4-carboxylic acid (6) were purchased from Sigma Co. and Aldrich Co., respectively. Melting points were determined on a micro hot-stage (Yanako MP-S3) and were uncorrected. Optical rotations were measured on a JASCO DIP-370 photo-electric polarimeter. 1H-NMR spectra were recorded on a Varian MVX-300 (300 MHz) spectrometer using trimethylsilane as internal standard unless otherwise noted. Silica gel TLC and column chromatography were performed on Merck TLC 60F-254 (0.25 mm) and Silica Gel 60 N (spherical, neutral) (Kanto Chemical Co., Inc.), respectively. Air- and/or moisture-sensitive reactions were carried out under an
atmosphere of argon using oven-dried glassware. In general, organic solvents were purified and dried using an appropriate procedure, and evaporation and concentration were carried out under reduced pressure below 30 °C, unless otherwise noted.

3-O-tert-Butyldimethylsilyl-17α-ethynyl-β-estradiol (4): To a stirred solution of 3 (309 mg, 1.04 mmol) in dry CH₂Cl₂ (15 mL) was added 2,6-lutidine (180 μL, 1.56 mmol) and TBSOTf (290 μL, 1.25 mmol) at 0 °C. After stirring for 2 h at 25 °C, the mixture was poured into ice-cold water. The resultant mixture was extracted with CHCl₃ and the extracts were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuo. Purification of the residue by column chromatography (40 g of silica gel, 3/1 n-hexane/EtOAc) gave 4 (428 mg, 100%) as white solids. Rf 0.80 (1/1 n-hexane/EtOAc); Mp. 122.5-123.5 °C; [α]²⁹_D +5.5° (c 1.22, CHCl₃); ¹H-NMR (300 MHz, CDCl₃) δ 7.18 (1H, d, J = 8.4 Hz), 6.66 (1H, dd, J = 8.4 and 2.4 Hz), 6.58 (1H, d, J = 2.4 Hz), 2.83-2.78 (2H, m), 2.62 (1H, s), 2.38-2.12 (3H, m), 2.05-1.96 (2H, m), 1.96-1.65 (5H, m), 1.55-1.23 (4H, m), 0.96 (9H, s), 0.89 (3H, s), 0.19 (6H, s); ¹³C-NMR (75 MHz, CDCl₃) δ 153.3, 137.8, 132.9, 126.1, 119.9, 117.2, 87.5, 79.9, 74.0, 49.5, 47.1, 43.6, 39.4, 39.0, 32.8, 29.6, 27.3, 26.3, 25.7 (x 3), 22.8, 18.1, 12.7, -4.4 (x 2); Anal. Calcd for C₂₆H₃₈O₂Si: C, 76.04; H, 9.33. Found: C, 75.67; H, 9.36.

3-O-tert-Butyldimethylsilyl-17α-hydroxypropargyl-β-estradiol (5): To a stirred solution of 3 (435 mg, 1.06 mmol) in dry THF (11 mL) was added LDA (1.77 mL, 3.18 mmol) at -78 °C. The reaction mixture was stirred for 0.5 h at -78 °C, and then (CH₂O)ₙ (95.5 mg, 3.18 mmol) was added to the mixture. After stirring for 17 h at 25 °C, the mixture was poured into ice-cold water. The resultant mixture was extracted with
EtOAc and the extracts were washed with brine, dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. Purification of the residue by column chromatography (40 g of silica gel, 2/1 n-hexane/EtOAc) gave 5 (359 mg, 77%) as white solids. R_f 0.30 (1/1 n-hexane/EtOAc); Mp. 178.0-179.0 °C; [α]$^{29}_{D}$ -3.3° (c 1.05, CHCl$_3$); 1H-NMR (CDCl$_3$) δ 7.11 (1H, d, J = 8.4 Hz), 6.61 (1H, dd, J = 8.4 and 2.4 Hz), 6.55 (1H, d, J = 2.4 Hz), 4.36 (2H, s), 2.83-2.78 (2H, m), 2.36-2.18 (3H, m), 2.06-1.97 (1H, m), 1.88-1.61 (7H, m), 1.54-1.25 (4H, m) 0.97 (9H, s), 0.87 (3H, s), 0.19 (6H, s); 13C-NMR (75 MHz, CDCl$_3$) δ 153.3, 137.8, 132.9, 126.1, 119.9, 117.2, 89.3, 84.2, 79.9, 51.1, 49.6, 47.2, 43.6, 39.4, 38.9, 33.0, 29.6, 27.3, 26.3, 25.7 (x 3), 22.9, 18.1, 12.8, -4.4 (x 2); Anal. Caled for C$_{27}$H$_{40}$O$_3$Si: C, 73.59; H, 9.15. Found: C, 73.41; H, 9.14.

3-O-tert-Butyldimethylsilyl-17α-hydroxypropargyl-β-estradiolyl 2-phenylquinoline-4-carboxylate (7): To a stirred solution of 5 (66.0 mg, 0.150 mmol) and 6 (45.0 mg, 0.181 mmol) in dry CH$_2$Cl$_2$ (1.5 mL) was added EDC (57.0 mg, 0.300 mmol) and DMAP (9.0 mg, 0.0749 mmol) at 0 °C. After stirring for 2 h, the reaction mixture was poured into ice-cold water. The resultant mixture was extracted with CHCl$_3$ and the extracts were washed with brine, dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. Purification of the residue by column chromatography (30 g of silica gel, 3/1 n-hexane/EtOAc) gave 7 (95.6 mg, 95%) as white solids. R_f 0.80 (1/1 n-hexane/EtOAc); Mp. 86.0-87.0 °C; [α]$^{27}_{D}$ -5.1° (c 0.91, CHCl$_3$); 1H-NMR (CDCl$_3$) δ 8.75 (1H, dd, J = 8.4 and 1.0 Hz), 8.43 (1H, s), 8.26-8.13 (3H, m), 7.81-7.43 (5H, m), 7.04 (1H, d, J = 8.4 Hz), 6.60 (1H, dd, J = 8.4 and 2.4 Hz), 6.54 (1H, d, J = 2.4 Hz), 5.16 (2H, s), 2.78 (2H, m), 2.43-2.13 (3H, m), 2.11-1.91 (2H, m), 1.91-1.64 (5H, m),
1.55-1.22 (4H, m), 0.98 (9H, s), 0.89 (3H, s), 0.19 (6H, s); 13C-NMR (75 MHz, CDCl$_3$) δ 165.6, 156.7, 153.3, 149.3, 138.7, 137.7, 135.0, 132.8, 130.4, 130.0, 129.8, 128.9 (x 2), 127.9, 127.4 (x 2), 126.1, 125.2, 123.9, 120.5, 119.9, 117.2, 91.3, 80.0, 79.5, 53.7, 49.7, 47.5, 43.6, 39.4, 38.9, 33.0, 29.6, 27.3, 26.3, 25.7 (x 3), 22.9, 18.2, 12.8, -4.4 (x 2); Anal. Calcd for C$_{43}$H$_{49}$NO$_4$Si: C, 76.86; H, 7.35; N, 2.08. Found: C, 76.70; H, 7.63; N, 1.94.

17α-hydroxypropagyl-β-estradiolyl 2-phenylquinoline-4-carboxylate (2): To a stirred solution of 7 (84.0 mg, 0.125 mmol) in dry THF (1.3 mL) was added AcOH (7.0 μL, 0.150 mmol) and TBAF (150 μL, 0.150 mmol) at 0 °C. After stirring for 1 h, the reaction mixture was poured into ice-cold water. The resultant mixture was extracted with EtOAc and the extracts were washed with brine, dried over anhydrous Na$_2$SO$_4$ and concentrated in vacuo. Purification of the residue by column chromatography (30 g of silica gel, 2/1 n-hexane/EtOAc) gave 2 (69.7 mg, 100%) as white solids. R_f 0.50 (1/1 n-hexane/EtOAc); Mp. 102.0-103.0 °C; $[\alpha]_{D}^{27}$ -6.5° (c 0.41, CHCl$_3$); 1H-NMR (CDCl$_3$) δ 8.75 (1H, dd, J = 8.4 and 1.0 Hz), 8.43 (1H, s), 8.27-8.13 (3H, m), 7.82-7.43 (5H, m), 7.07 (1H, d, J = 8.4 Hz), 6.61 (1H, dd, J = 8.4 and 2.4 Hz), 6.55 (1H, d, J = 2.4 Hz), 5.16 (2H, s), 4.57 (1H, s), 2.80 (2H, m), 2.44-2.12 (3H, m), 2.11-1.91 (2H, m), 1.91-1.64 (5H, m), 1.50-1.30 (4H, m), 0.89 (3H, s, Me-13); 13C-NMR (75 MHz, CDCl$_3$) δ 165.7, 156.8, 153.5, 149.1, 138.6, 138.0, 135.1, 132.1, 130.2, 130.0, 129.8, 128.9 (x 2), 127.9, 127.5 (x 2), 126.4, 125.2, 123.8, 120.6, 115.3, 112.7, 91.3, 80.0, 79.5, 53.8, 49.6, 47.5, 43.5, 39.4, 38.8, 32.9, 29.5, 27.2, 26.3, 22.9, 12.8; Anal. Calcd for C$_{37}$H$_{35}$NO$_4$: C, 79.69; H, 6.33; N, 2.51. Found: C, 79.72; H, 6.54; N, 2.77.
Protein photo-degradation.

Human estrogen receptor-α (hER-α), bovine serum albumin (BSA) and hen egg lysozyme (Lyso) were purchased from Sigma Co. A UV lamp (365 nm, 100 W, Blak-ray (B-100A), UVP. Inc.) was used for the photo-irradiation. All the protein degradation experiments were performed with hER-α, BSA or Lyso (1.0 μM) in a volume of 10 μL containing 20% acetonitrile in 50 mM Tris-HCl buffer (pH 8.0) at 25 °C for 2 h under irradiation of the UV lamp placed at 10 cm from the mixture. The protein-sample levels were varied as indicated in the figure captions.

Electrophoresis.

SDS/polyacrylamide gel electrophoresis (SDS-PAGE) experiments were performed as reported.\(^1\) After addition of a 4.8 μL solution containing SDS (5%, wt/vol), glycerol (27%, vol/vol), DTT (0.5%, wt/vol) and bromophenol blue (0.007%, wt/vol) to the photoirradiated samples. Gels (8% for BSA and 12% for hER-α and Lyso) were run by applying 110 V for 1.5 h for BSA or 2.5 h for hER-α and Lyso. The gels were stained with SYPRO Ruby Protein Gel Stain (Bio-Rad Lab. Inc.) for 3 h, destained in acetic acid (7%, vol/vol) and methanol (10%, vol/vol) for 0.5 h, and then washed with water. The gels were scanned with a Molecular Imager FX (Bio-Rad Lab. Inc.) and images were processed using Adobe Photoshop software. Molecular weight markers were used in each gel for calibration.
ESR Spectrometry.

ESR spectrum\(^2\) was recorded using a Bruker BioSpin EMX EPR operating at 9.5 GHz with 100 kHz modulation. A mixture of \(2\) (4 mM) and DMPO (100 mM) in a volume of 1.0 mL containing 50% acetonitrile Tris-HCl buffer (pH 8.0, 50 mM) was placed in a quartz flat cell and irradiated directly inside the microwave cavity of the spectrometer using a UV lamp (365 nm, 100 W, Blak-ray (B-100A), UVP. Inc.).

SI-Fig. S1. ESR spectra obtained a) by treatment of DMPO with \(2\) without photo-irradiation or b) by photo-irradiation of DMPO in the absence of \(2\). Compound \(2\) (4 mM) and DMPO (100 mM) were used in 50% acetonitrile/Tris-HCl buffer (pH 8.0, 50 mM).

References.

1H NMR spectrum of 4.

13C NMR spectrum of 4.
1H NMR spectrum of 5.

13C NMR spectrum of 5.
1H NMR spectrum of 7.

13C NMR spectrum of 7.
1H NMR spectrum of 2.

13C NMR spectrum of 2.