Supplementary material

A concise organocatalytic and enantioselective synthesis of isotetronic acids

Jean-Marc Vincent,* Chrystèle Margottin, Muriel Berlande, Dominique Cavagnat, Thierry Buffeteau and Yannick Landais*

General Remarks: NMR analysis were carried out on spectrometers Bruker AC-200 FT (200 MHz for proton, 50.4 MHz for carbon), Bruker AC-250 FT (250 MHz for proton, 63 MHz for carbon), Bruker DPX-300 (300 MHz for proton, 75.5 MHz for carbon) and Bruker DPX-400 (400 MHz for proton, 100 MHz for carbon) by using deuterated chloroform as solvent. The chemical shifts (δ) for carbon and proton are given compared to the internal reference (TMS) and are expressed in ppm. Some mass spectra (low resolution) were obtained using a Thermo Quest Finnigan Trace GC-MS apparatus. Ionization was carried out by electronic impact (potential of ionization: 70 eV). Other mass spectra (low and high resolution) were obtained on a Micromass autospec-Q spectrometer. Ionization employed was the electronic impact mode [potential of ionization: 70 eV), and the LSIMS mode (potential of ionization: 35 keV, matrix: (3-nitrophenyl)methanol]. IR spectra were obtained on a Perkin-Elmer Paragon 1000 FT-IR spectrometer. The wavelengths (v) are expressed in cm⁻¹.

General procedure for the preparation of the isotetronic acids : The α -ketoacid (1 mmol), the aldehyde (1 mmol) and the catalyst (10 to 30 mol%) in solution (or in suspension) in the desired solvent (1 mL) were stirred at room temperature for the period specified in Table 1. After removal of the solvent, the crude mixtures were purified by column chromatography

over silica gel (CH_2Cl_2 -MeOH) to furnish the desired compounds. For reactions carried out in water, a small amount of CH_2Cl_2 (1 mL) is added to the reaction mixture to extract the products before chromatography over silica gel.

Characterization of the isotetronic acids:

(*S*)-3-hydroxy-5-isopropyl-4-methyfuran-2(*5H*)-one, **7a**: Pale yellow waxy solid; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.3; HPLC: Welk O2 (hexane/EtOH, 90/10, flow rate 1.0 mL min⁻¹, $\lambda = 247$ nm): $t_{minor} = 9.4$, $t_{major} = 10.0$ min; ¹H NMR (300 MHz, CDCl₃), δ 6.02 (bs, 1H, OH), 4.69 (m, 1H, CHO), 2.14-2.04 (m, 1H, CH(CH₃)₂), 1.89 (s, 3H, CH₃C=C), 1.14 (d, *J* = 6.8 Hz, 3H, CH₃CH), 0.72 ppm (d, *J* = 6.8 Hz, 3H, CH₃CH); ¹³C NMR (75.5 MHz, CDCl₃) δ 171.00, 138.03, 130.81, 85.84, 29.83, 19.35, 13.88, 9.68 ppm; MS (EI): *m/z* (%) = 156 (2), 85 (52), 43 (100); HRMS (LSIMS): calcd. for C₈H₁₂O₃ 156.078644, found: 156.078781.

Ethyl-2,5-dihydro-4-hydroxy-3-methyl-5-oxofuran-2-carboxylate, **7b**: Colorless oil; *R*f (CH₂Cl₂/MeOH, 99/1) = 0.2; HPLC: Welk O2 (hexane/EtOH, 97/3, flow rate 1.0 mL min⁻¹, λ = 238 nm): *t* = 33.4, *t* = 36.5 min; ¹H NMR (250 MHz, CDCl₃), δ 5.18 (s, 1H, CHO), 4.28 (m, 2H, CH₂CH₃), 1.98 (s, 3H, CH₃C=C), 1.30 ppm (t, J = 7.5 Hz, 3H, CH₃CH₂); ¹³C NMR (62.9 MHz, CDCl₃) δ 170.30, 166.67, 138.54, 127.32, 78.81, 62.89, 14.39, 9.76 ppm; MS (LSIMS): *m*/*z* (%) = 373 (15) [2M + H]⁺, 209 (15) [M + Na]⁺, 187 (100) [M + H]⁺; HRMS (LSIMS): calcd. for C₈H₁₁O₅ [M + H]⁺: 187.060649, found: 187.060400.

(*S*)-3-hydroxy-4-methyl-5-phenylfuran-2(5H)-one, **7d**: White solid; M.p. 75 °C; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.3; HPLC: Chiralcel AD-H[®] (hexane/*i*-PrOH, 90/10, flow rate 1.0 mL min⁻¹, λ = 230 nm): *t_{minor}* = 15.6, *t_{major}* = 12.8 min; ¹H NMR (300 MHz, CDCl₃), δ 7.41-7.39 (m, 2H, ArH), 7.25-7.22 (m, 3H, ArH), 5.64 (s, 1H, CHO), 5.50 (s, 1H, OH), 1.78 ppm (s, 3H, CH₃C=C); ¹³C NMR (75.5 MHz, CDCl₃) δ 170.81, 137.49, 134.44, 131.49, 129.56, 129.00, 127.19, 83.51, 9.64 ppm; IR (KBr) ν_{max} /cm⁻¹ 3530, 3443, 3359, 1735, 1700, 1687, 1457, 1310, 1213, 1165, 1150, 1054, 954, 779, 760, 699. MS (EI): *m*/*z* (%) = 190 (70), 145 (100); HRMS (LSIMS): calcd. for C₁₁H₁₀O₃ 190.062994, found: 190.063233.

(*S*)-3-hydroxy-4-methyl-5-(4-nitrophenyl)furan-2(5H)-one, **7e**: Orange solid; M.p. 85 °C; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.25; HPLC: Welk O2 (hexane/EtOH, 90/10, flow rate 1.0 mL min⁻¹, $\lambda = 254$ nm): $t_{minor} = 22.4$, $t_{major} = 25.2$ min; ¹H NMR (300 MHz, CDCl₃), $\delta 8.26$ (d, J = 8.7

Hz, 2H, ArH), 7.43 (d, J = 8.7 Hz, 2H, ArH), 5.95 (s, 1H, CHO), 5.74 (bs, 1H, OH), 1.80 ppm (s, 3H, CH₃C=C); ¹³C NMR (75.5 MHz, CDCl₃) δ 169.74, 148.64, 141.70, 137.64, 130.02, 127.86, 124.27, 81.75, 9.50 ppm; IR (KBr) ν_{max} /cm⁻¹ 3319, 1767, 1702, 1600, 1514, 1405, 1358, 1310, 1215, 1149, 1055, 1000, 979, 856, 829, 806, 774, 751, 700. MS (EI): m/z (%) = 235 (15), 190 (100), 116 (85), 49 (85); HRMS: calcd. for C₁₁H₉NO₅: 235.048073, found: 235.048006.

(*R*)-3-hydroxy-4-methyl-5-(perfluorophenyl)furan-2(5H)-one, **7f**: White solid; M.p. 148 °C; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.25; HPLC: Welk O2 (hexane/EtOH, 96/4, flow rate 1.0 mL min⁻¹, λ = 254 nm): t_{minor} = 13.8, t_{major} = 15.6 min; ¹H NMR (250 MHz, CDCl₃), δ 6.05 (s, 1H, *CHO*), 1.86 ppm (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 146.0 (¹*J*_{CF} = 250 Hz), 142.3 (¹*J*_{CF} = 250 Hz), 138.5, 138.0 (¹*J*_{CF} = 260 Hz), 127.6, 108.6, 73.3, 9.3 ppm; IR (KBr) v_{max} /cm⁻¹ 3349, 3201, 1710, 1689, 1676, 1656, 1531, 1508, 1429, 1362, 1315, 1289, 1214, 1165, 1135, 1056, 1029, 1009, 992, 967, 912, 831, 779, 752, 665. MS (ES⁻): *m/z* (%) = 279.0 (100) [M - H]⁻; HRMS (LSIMS): calcd. for [M + H]⁺ C₁₁H₆F₅O₃: 281.023420, found: 281.023420.

(*S*)-5-(4-bromophenyl)-3-hydroxy-4-methylfuran-2(5H)-one, **7g**: Pale yellow solid; M.p. 139 °C; *R*f (CH₂Cl₂/MeOH, 99/1) = 0.3; HPLC: Welk O2 (hexane/EtOH, 96/4, flow rate 1.0 mL min⁻¹, $\lambda = 254$ nm): $t_{minor} = 20.2$, $t_{major} = 28.6$ min; ¹H NMR (250 MHz, CDCl₃), δ 7.52 (d, J = 8.5 Hz, 2H, ArH), 7.11 (d, J = 8.5 Hz, 2H, ArH), 5.29 (s, 1H, CHO), 1.75 ppm (s, 3H, CH₃); ¹³C NMR (62.9 MHz, CDCl₃) δ 170.43, 137.69, 133.58, 132.24, 130.86, 128.81, 123.69, 82.63, 9.58 ppm. IR (KBr) v_{max} /cm⁻¹ 3526, 3455, 3348, 1748, 1706, 1687, 1489, 1437, 1412, 1366, 1305, 1287, 1213, 1194, 1154, 1068, 1012, 992, 974, 840, 827, 803, 773. MS (ES–): m/z (%) = 266.9 (100) [M – H]⁻, 268.9 (75), 269.9 (20); HRMS (LSIMS): calcd. for [M + H]⁺ C₁₁H₁₀BrO₃ 268.981330, found: 268.981814.

(*S*)-3-hydroxy-5-(4-methoxyphenyl)-4-methylfuran-2(5H)-one, **7h**: Pale yellow solid; M.p. 124 °C; *R*f (CH₂Cl₂/MeOH, 99/1) = 0.3; HPLC: Welk O2 (hexane/EtOH, 90/10, flow rate 1.0 mL min⁻¹, λ = 254 nm): t_{minor} = 26.3, t_{major} = 34.2 min; ¹H NMR (250 MHz, CDCl₃), δ 7.16 (d, *J* = 7.5 Hz, 2H, ArH), 6.90 (d, *J* = 7.5 Hz, 2H, ArH), 5.60 (s, 1H, CHO), 3.82 (s, 3H, OCH₃), 1.77 ppm (s, 3H, CH₃); ¹³C NMR (75.5 MHz, CDCl₃) δ 170.93, 160.53, 137.76, 131.51, 128.83, 126.32, 114.38, 83.36, 55.34, 9.70 ppm. IR (KBr) v_{max} /cm⁻¹ 3319, 1752, 1705, 1611,

1514, 1458, 1438, 1412, 1362, 1304, 1283, 1258, 1210, 1174, 1150, 1030, 975, 835. MS (LSIMS+): m/z (%) = 243 (30) [M + Na]⁺, 221.0 (100) [M + H]⁺; HRMS (LSIMS), calcd. for [M + H]⁺ C₁₂H₁₃O₄: 221.081384, found: 221.081886.

(*R*)-3-hydroxy-5-(perfluorophenyl)-4-phenylfuran-2(5H)-one, **7j**: White solid; M.p. 162 °C; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.3; HPLC: Welk O2 (hexane/EtOH, 96/4, flow rate 1.0 mL min⁻¹, $\lambda = 254$ nm): $t_{minor} = 13.5$, $t_{major} = 16.1$ min; ¹H NMR (400 MHz, CDCl₃), δ 7.58 (d, J =7.2 Hz, 2H, ArH), 7.38 (m, 3H, ArH), 6.62 ppm (s, 1H, CHO); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 146.0 (¹ $J_{CF} = 250$ Hz), 142.4 (¹ $J_{CF} = 260$ Hz), 138.0 (¹ $J_{CF} = 250$ Hz), 137.9, 129.9, 129.4, 129.2, 127.1, 127.0, 109.7, 71.1 ppm. IR (KBr) ν_{max} /cm⁻¹ 3289, 3218, 1757, 1528, 1505, 1404, 1337, 1307, 1294, 1157, 1134, 994, 950, 765, 697, 663. MS (LSIMS): m/z (%) = 343 (100) [M + H]⁺, 365.0 (85) [M + Na]⁺; HRMS (+TOF MS), calcd. for [M + Na]⁺ C₁₆H₇O₃F₅Na: 365.0213, found: 365.214.

(*R*)-4-ethyl-3-hydroxy-5-(perfluorophenyl)furan-2(5H)-one, **7k**: White solid; M.p. 147 °C; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.3; HPLC: Welk O2 (hexane/EtOH, 96/4, flow rate 1.0 mL min⁻¹, λ = 254 nm): t_{minor} = 13.3, t_{major} = 15.0 min; ¹H NMR (250 MHz, CDCl₃), δ 6.11 (s, 1H, *CH*O), 2.44 (qd, ³*J* = 7.6 Hz, ²*J* = 15.3 Hz, 1H, *CH*HCH₃), 2.08 (qd, ³*J* = 7.6 Hz, ²*J* = 15.3 Hz, 1H, CHHCH₃), 1.11 ppm (t, *J* = 8.5 Hz, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.10, 146.0 (¹*J*_{CF} = 250 Hz), 142.3 (¹*J*_{CF} = 250 Hz), 138.0 (¹*J*_{CF} = 250 Hz), 138.0, 132.7, 108.9, 72.2, 18.2, 11.6 ppm. IR (KBr) v_{max} /cm⁻¹ 3218, 1731, 1680, 1670, 1654, 1529, 1506, 1360, 1338, 1312, 1260, 1164, 1135, 1072, 995, 945, 750, 668. MS (LSIMS): *m*/*z* (%) = 295 (100) [M + H]⁺, 317.0 (55) [M + Na]⁺; HRMS (+TOF MS), calcd. for [M + Na]⁺ C₁₂H₇O₃F₅Na: 317.0213, found: 317.0205.

(*R*)-5-(tribromomethyl)-3-hydroxy-4-methylfuran-2(5H)-one, **9a**: The reaction affords a mixture of tribromo- **9a**, and dibromo-derivatives **9b**, in an approximately 2/1 ratio (GC-MS, of the reaction mixture given below). Whilst **9a** and **9b** display very close *R*f on silica TLC plates, they have been partially separated by column chromatography (GC-MS and HPLC chromatograms presented below) to afford **9a** in an analytically pure form. White solid; *R*f (CH₂Cl₂/MeOH, 98/2) = 0.2; HPLC: Chiralcel AD-H[®] (hexane/*i*-PrOH, 90/10, flow rate 1.0 mL min⁻¹, λ = 230 nm): t_{minor} = 8.9, t_{major} = 9.5 min; ¹H NMR (400 MHz, CDCl₃), δ 6.35 (s, 1H, OH), 5.30 (s, 1H, CHO), 2.10 ppm (s, 3H, CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 167.8,

142.4, 128.4, 88.5, 39.2, 12.7 ppm. IR (KBr) $v_{\text{max}}/\text{cm}^{-1}$ 3287, 1760, 1699, 1437, 1409, 1357, 1325, 1277, 1209, 1141, 1069, 1031, 993, 822, 770, 740, 703. MS (LSIMS): m/z (%) = 387.0 (13) [M + Na]⁺, 364.0 (10) [M + H]⁺; HRMS (LSIMS), calcd. for [M + Na]⁺ C₆H₅ONaBr: 384.7686, found: 384.7683.

Figure 1. GC chromatogram of the reaction mixture.

Figure2. GC chromatogram and MS spectrum of 9a isolated after column chromatography.

Figure 3. Chiral HPLC of 9a obtained after column chromatography.

Figure 4. GC chromatogram and MS spectra of 9a and 9b mixture obtained after column chromatography.

Figure 5. Chiral HPLC of 9a and 9b mixture obtained after column chromatography.

Representative HPLC chromatograms of isotetronic acids isolated after

silica gel chromatography

TILE C: (HFCHEM	ATT ANTA ANA ANA ANA ANA ANA ANA ANA ANA		Sampre Mame: JMV 2
Injection Date Sample Name Acq. Operator Method Last changed 96 % Hexane 4 %	: 16/07/07 08:54:05 : JMV 202 : welk : C:\HPCHEM\1\METHODS\96D-4C.M : 16/07/07 08:50:57 by welk (modified after loading) Ethanol	Vial : -	
mAU	avelength=254 nm (JM202-2.D)	5,038	
300			
250 -	Б		
-30	E		
200 -			
150 -			
28	' <u> </u> F /K		
100-	F		
50 -			
0-		13.310	
	2.5 5 7.5 10	12.5 15	t7.5 20 22.5
	Area Percent Report		=
			==
Multiplier	: 1.0000		
Dirucion			
Signal 1: VWD1	A, Wavelength=254 nm		
Peak RetTime Ty # [min]	pe Width Area Height [min] mAU *s [mAU] 	Area %	
1 13.310 BF 2 15.038 PE	0.5138 491.27975 14.80651 0.4244 9657.19336 349.41730	4.8409 95.1591	
Totals :	1.01485e4 364.22381		
Results obtain	ed with enhanced integrator!		
	*** End of Deport ***		

Instrument 1 16/07/07 09:18:21 welk

Constanting of the local states

Instrument 1 10/07/07 09:45:24 welk

*** End of Report ***

Instrument 1 05/05/06 10:10:59 AD H

Instrument 1 16/07/07 09:55:06 welk

VCD measurements. IR and VCD spectra were recorded with a ThermoNicolet Nexus 670 FTIR spectrometer equipped with a VCD optical bench.¹ In this optical bench, the light beam was focused by a BaF₂ lens (191 mm focal length) to the sample, passing an optical filter (depending on the studied spectral range), a BaF₂ wire grid polarizer (Specac), and a ZnSe photoelastic modulator (Hinds Instruments, Type II/ZS50). The light was then focused by a ZnSe lens (38.1 mm focal length) onto a 1x1 mm² HgCdTe (ThermoNicolet, MCTA* E6032) detector. IR and VCD spectra were recorded at a resolution of 4 cm⁻¹, by coadding 50 scans and 36000 scans (12h acquisition time), respectively. The sample was held in a variable path length cell with BaF₂ windows. IR and VCD spectra of 7f were measured in CDCl₃ at a concentration of 0.025 M and at a path length of 250 µm. Baseline corrections of the VCD spectrum was performed by subtracting the VCD spectrum of (\pm) -7f recorded at the same concentration. In all experiments, the photoelastic modulator was adjusted for a maximum efficiency at 1400 cm⁻¹. Calculations were done with the standard ThermoNicolet software, using Happ and Genzel apodization, de-Haseth phase-correction and a zero-filling factor of one. Calibration spectra were recorded using a birefringent plate (CdSe) and a second BaF₂ wire grid polarizer, following the experimental procedure previously published.² Finally, in the presented IR spectra, the solvent absorption was subtracted out.

DFT calculations. The geometry optimizations, vibrational frequencies, absorption, and VCD intensities were calculated by Gaussian 03 program³ on the CIS-IBM of the M3PEC-Mesocentre of the University Bordeaux I. Calculations of the optimized geometry of $7f_a$ and $7f_b$ conformers were performed at the density functional theory level using B3PW91 functional and cc-pVTZ basis set. Vibrational frequencies, IR, and VCD intensities were calculated at the same level of theory, utilizing the magnetic field perturbation method with gauge-invariant atomic orbitals.⁴ For comparison to experiment, the calculated frequencies were scaled by 0.978 and the calculated intensities were converted to Lorentzian bands with half-width of 7 cm⁻¹.

References ESI :

- 1 T. Buffeteau, F. Lagugné-Labarthet and C. Sourrisseau, Appl. Spectrosc. 2005, 59, 732.
- 2 L. A. Nafie and D. W. Vidrine, In *Fourier Transform Infrared Spectroscopy*, J. R. Ferraro and L. J. Basile, Eds (Academic Press, New York 1982), Vol. 3, pp 83-123.

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. *GAUSSIAN 03;* Revision B.04, Gaussian Inc., Pittsburgh, PA, 2003.
- 4 J. R. Cheeseman, M. J. Frisch, F. J. Delvin and P. J. Stephens, *Chem. Phys. Lett.* 1996, 252, 211.