Supporting Information

A 3D Chiral Nanoporous Coordination Framework Consisting of Homochiral Nanotubes Assembled from Octuple Helices

Xiang-Rong Hao, Xin-Long Wang, Chao Qin, Zhong-Min Su*, En-Bo Wang*, Ya-Qian Lan, and Kui-Zhan Shao

Institute of Functional Materials, Department of Chemistry and Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024, China. Email: zmsu@nenu.edu.cn wangenbo@public.cc.jl.cn
X-ray structure analysis: C$_{31}$H$_{38}$N$_3$O$_8$Cd: $M_r = 693.04$, hexagonal, space group $P6_122$, $a = b = 26.712(4)$ Å, $c = 15.919(3)$ Å, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$, $V = 9837(3)$ Å3, $Z = 12$, $\rho_{\text{calc}} = 1.404$ mg m$^{-3}$, Flack parameter = $-0.01(3)$, final $R1 = 0.0384$ for 9677 independent reflections [$I > 2\sigma(I)$]. The data were collected on a Bruker Apex CCD diffractometer at 133(2) K with graphite-monochromated Mo$_{K\alpha}$ radiation ($\lambda = 0.71073$ Å).

The data were collected on a Bruker Apex CCD diffractometer at 133(2) K with graphite-monochromated Mo$_{K\alpha}$ radiation ($\lambda = 0.71073$ Å). The structures were solved by direct method and refined by full-matrix least-squares methods with SHELXL.$^{[1]}$ The anion and DMA molecules were highly disordered and could not be modeled properly, thus the SQUEEZE routine, a part of the PLATON package of crystallographic software, was applied to calculate the solvent disorder area and remove its contribution to the overall intensity data. The refinements of the guest-free structure on the squeezed data gave the final $R1 = 0.0384$ and $wR2 = 0.0798$ ($R1 = 0.0463$ and $wR2 = 0.1322$ without employing PLATON/SQUEEZE). The final formula was calculated from the SQUEEZE results combined with the following characterization techniques. Despite the disorder, identification of the guest molecules is readily accomplished by 1H NMR spectroscopy. The 1H NMR spectrum of 1 recorded in D$_2$O exhibits a set of well-resolved proton signals. The signals at 2.88, 2.73 and 1.91 ppm attributed to three CH$_3$ groups of DMA,$^{[2]}$ while the signal at 2.54 ppm ascribes to the CH$_3$ group of dimethylamine. Furthermore, NMR analysis reveals that the relative molar ratio of dimethylamine and DMA is approximately 1:2. The IR
spectrum of 1, as expected, exhibits a sharp band at 1619 cm\(^{-1}\) corresponding to \(\tilde{\nu}_{C=O}\) stretching frequency, which is indicative of DMA molecule. According to the previous literature, the peaks of 1540 and 1398 cm\(^{-1}\) are attributed to the asymmetric and symmetric stretching vibrations of the carboxylate group of bpdc ligand.\(^3\) The peak at ca. 3419 cm\(^{-1}\) is attributed to the N-H absorption vibration of dimethylamine. Further information supporting the formula of 1 is obtained by thermogravimetric analysis, elemental analysis and the consideration of charge balance.

S1-1. Section of the X-ray crystal structure of 1, showing the coordination environments of Cd$^{2+}$ ions and their connectivity with bpdc anions. Color code: C black; O red; Cd green.

S1-2. Coordination modes of the bpdc ligands in the structure of 1. bpdcA: chelating bis(bidentate), bpdcB: bridging bis(bidentate). Color code: C black; O red; Cd green.
SI-3. An angle of 123.92° formed between the planes defined by the two C-O-Cd-O-C chelate rings at one metal center. Color code: C black; O red; Cd green.

SI-4. Perspective view of the trigonal channel that is surrounded by bpdc\(^B\) ligands. Color code: C black; O red; Cd green.
SI-5. The 1H NMR spectrum of 1 recorded in D$_2$O.

SI-6. FT-IR spectrum of as-synthesized 1.
SI-7. TG curve of 1.