'Bismesitylmagnesium: a thermally stable and non-nucleophilic carbon-centred base reagent for the efficient preparation of silyl enol ethers'

William J. Kerr,*^{*a*} Allan J. B Watson^{*a*} and Douglas Hayes^{*b*}

^aDepartment of Pure and Applied Chemistry, WESTChem, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, Scotland, UK

^bGlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.

Supporting Information

1. General

1.1. Purification of Reagents

THF and 1,4-dioxane were dried by heating to reflux over sodium wire using benzophenone ketyl as indicator, and then distilled under N_2 . Diethyl ether and light petroleum were used as purchased from suppliers without further purification. Light petroleum refers to the fraction of b.p. 30-40°C.

2-Mesitylmagnesium bromide,¹ obtained as a 1 M solution in THF, *n*-butyllithium, obtained as a 2.5 M solution in hexanes, and *tert*-butyllithium, obtained as a 1.7 M solution in pentane, were standardised using salicaldehyde phenylhydrazone as indicator.²

Diisopropylamine was dried by heating to reflux over calcium hydride and distilling under nitrogen.

Cyclohexanone 1a, cyclopentanone 1b, cycloheptanone 1c, 2-methylcyclohexanone 1d, 2,6dimethylcyclohexanone 1e, 4-methylcyclohexanone 1f, 4-*n*-propylcyclohexanone 1g, α -tetralone 1j, 4chlorobutyrophenone 1k, and propiophenone 1l were dried by heating to reflux over calcium chloride and distilled either under reduced pressure or under nitrogen and stored over 4 Å molecular sieves.

4-*t*-Butylcyclohexanone **1h** and 4-phenylcyclohexanone **1i** were recrystallised twice from dry hexane at 4° C and stored under N₂.

Chlorotrimethylsilane was distilled under N₂ and stored over 4 Å molecular sieves.

1.2. Purification and Analysis of Products

Thin layer chromatography was carried out using Camlab silica plates coated with indicator UV_{254} . These were analysed using a Mineralight UVGL-25 lamp or developed using vanillin. Flash column chromatography was carried out using Prolabo silica gel (230-400 mesh).

Gas chromatography was carried out using a Hewlett Packard 5890 Series 2 Gas Chromatograph fitted with a Varian WCOT Fused Silica Column containing a CP-SIL 19CB coating and using H_2 as carrier gas.

IR spectra were obtained on a Perkin Elmer Spectrum One machine.

 1 H and 13 C spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz and 100 MHz, respectively. Chemical shifts are reported in ppm. Coupling constants are reported in Hz and refer to $^{3}J_{H-}$ H interactions unless otherwise specified.

High resolution mass spectra was obtained using a JEOL JMS-700 high resolution mass spectrometer. The ionization method used was Electron Impact (EI) with PFK perfluorokerosene (PFK) as the reference compound.

2. Experimental Procedures

All reactions were air sensitive and, as such, were carried out using flame dried Schlenk apparatus. Purging refers to an evacuation/nitrogen refilling procedure carried out 3 times.

2.1 Preparation of Bismesitylmagnesium, Mes₂Mg^{3,4}

To a solution of MesMgBr (1 M in THF, 100 mmol, 100 mL) under N_2 at room temperature was added 1,4-dioxane (105 mmol, 9.25 g, 8.95 mL) steadily over 5 minutes. The mixture was stirred vigorously for 3 hours before discontinuation of the stirring. The mixture (now a yellow solution with a fine white precipitate) was then left to settle for 72 h. After this time, the precipitate had settled to a thick white layer at the bottom of the Schlenk tube allowing removal of the yellow Mes₂Mg solution *via* cannula to a

previously flame-dried and purged pear-shaped flask. Care was taken to avoid withdrawing any of the precipitate. The Mes₂Mg solution was standardised using salicaldehyde phenylhydrazone as indicator before use.² The molarity of the Mes₂Mg solution was typically 0.5 M (100% conversion of MesMgBr to Mes₂Mg, yield typically ~90 mL, ~90%).

2.2 Deprotonation of Cyclohexanone (1a) Using Mes₂Mg with an Amine Additive

A flame-dried Schlenk tube was charged with Mes₂Mg (0.5 M solution in THF, 1.1 mmol, 2.2 mL), THF (7.8 mL) and diisopropylamine (0.2 mmol, 20 mg, 28 µl). The mixture was stirred for 30 minutes at room temperature before cooling to 0°C. TMSCl (4 mmol, 435 mg, 0.5 mL) was added and the mixture was stirred for 5 minutes before addition of cyclohexanone (1 mmol, 98 mg, 0.1 mL) as a solution in THF (2 mL) over 1 h via syringe pump. The reaction mixture was stirred at 0°C under N₂ for 16 h before quenching with sat. NaHCO₃ aq. solution (10 mL). The mixture was allowed to warm to room temperature before extracting with Et_2O ((1 x 40 mL) + (2 x 25 mL)). The combined organic extracts were dried (Na₂SO₄) and a representative sample was analysed by G.C. to obtain the ketone to silvl enol ether conversion. The solution was then filtered and concentrated in vacuo to afford a residue which was purified by column chromatography eluting with 1% Et₂O/petrol to afford 1trimethylsilyloxycyclohexene 2a as a colourless oil.

2.3 Deprotonation of Cyclohexanone (1a) Using Mes₂Mg without an Amine Additive

A flame-dried Schlenk tube was charged with Mes₂Mg (0.5 M solution in THF, 1.1 mmol, 2.2 mL) and THF (7.8 mL). The mixture was stirred for 30 minutes at room temperature before cooling to 0°C. TMSCl (4 mmol, 435 mg, 0.5 mL) was added and the mixture was stirred for 5 minutes before addition of cyclohexanone (1 mmol, 98 mg, 0.1 mL) as a solution in THF (2 mL) over 1 h *via* syringe pump. The reaction mixture was stirred at 0°C under N₂ for 16 h before quenching with sat. NaHCO₃ aq. solution (10 mL). The mixture was allowed to warm to room temperature before extracting with Et₂O ((1 x 40 mL) + (2 x 25 mL)). The combined organic extracts were dried (Na₂SO₄) and a representative sample was analysed by G.C. to obtain the ketone to silyl enol ether conversion. The solution was then filtered and concentrated *in vacuo* to afford a residue which was purified by column chromatography eluting with 1% Et₂O/petrol to afford 1-trimethylsilyloxycyclohexene **2a** as a colourless oil.

2.4 Deprotonation of Ketones Using Optimised Mes₂Mg Conditions

A Schlenk tube was charged with LiCl (2 mmol, 85 mg) and flame-dried under vacuum. The tube was purged three times with N_2 before cooling to room temperature and charging with Mes₂Mg (0.5 M solution in THF, 0.5 mmol, 1 mL) and THF (9 mL). The mixture was stirred for 15 minutes at room temperature before cooling to 0°C. TMSCl (1 mmol, 108.64 mg, 0.13 mL) was added and the mixture was stirred for 5 minutes before addition of the ketone (1 mmol) as a solution in THF (2 mL) over 1 h *via* syringe pump. The reaction mixture was stirred at 0°C under N_2 for 8 h before quenching with sat. NaHCO₃ aq. solution (10 mL). The mixture was allowed to warm to room temperature before extracting with Et₂O ((1 x 40 mL) + (2 x 25 mL)). The combined organic extracts were dried (Na₂SO₄) and a representative sample was analysed by G.C. to obtain the ketone to silyl enol ether conversion. The solution was then filtered and concentrated *in vacuo* to afford a residue which was purified by column chromatography eluting with 1% Et₂O/petrol to afford the silyl enol ether product.

3. Product Data

IR and ¹H NMR data for known compounds **2a-2k** followed by IR, ¹H NMR, ¹³C NMR, and HRMS data for novel compound **2l** are provided.

2a: 1-Trimethylsilyloxycyclohexene^{5,6,7a,8}

 v_{max} (DCM): 1668 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.18 (s, 9H, Si(CH₃)₃), 1.48-1.54 (m, 2H, CH₂), 1.63-1.69 (m, 2H, CH₂), 1.97-2.03 (m, 4H, 2xCH₂), 4.86-4.88 (m, 1H, CH).

2b: 1-Trimethylsiloxycyclopentene^{5,6,7b,9}

 v_{max} (DCM): 1645 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.20 (s, 9H, Si(CH₃)₃), 1.82-1.90 (m, 2H, CH₂), 2.24-2.29 (m, 4H, 2xCH₂), 4.62-4.63 (m, 1H, CH).

2c: 1-Trimethylsilyloxycycloheptene¹⁰

 v_{max} (DCM): 1660 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.18 (s, 9H, Si(CH₃)₃), 1.50-1.59 (m, 4H, 2xCH₂), 1.66-1.70 (m, 2H, CH₂), 1.97-2.01 (m, 2H, CH₂), 2.22-2.24 (m, 2H, CH₂), 4.86-4.88 (m, 1H, CH).

2d: 6-Methyl-1-trimethylsilyloxy-1-cyclohexene^{5,6,8}

 v_{max} (DCM): 1660 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.19 (s, 9H, Si(CH₃)₃), 1.04 (d, 3H, CH₃, J=7.0 Hz), 1.36-1.41 (m, 1H, CH), 1.45-1.49 (m, 1H, CH), 1.57-1.59 (m, 1H, CH), 1.78-1.82 (m, 1H, CH), 1.98-2.02 (m, 2H, CH₂), 2.14-2.15 (m, 1H, CH), 4.81 (td, 1H, CH, J=3.95, 1.2 Hz).

2e: 2,6-Dimethyl-1-trimethylsilyloxy-1-cyclohexene¹¹⁻¹⁶

 v_{max} (DCM): 1678 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.19 (s, 9H, Si(CH₃)₃), 1.04 (d, 3H, CH₃, J=6.9 Hz), 1.35-1.41 (m, 1H, CH), 1.43-1.49 (m, 1H, CH), 1.56 (s, 3H, CH₃), 1.58-1.65 (m, 1H, CH), 1.75-1.82 (m, 1H, CH), 1.95 (t, 2H, CH, J=6.2), 2.12-2.14 (m, 1H, CH).

2f: 4-Methyl-1-trimethylsilyloxy-1-cyclohexene¹⁶⁻¹⁸

 v_{max} (DCM): 1669 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.18 (s, 9H, Si(CH₃)₃), 0.95 (d, 3H, CH₃, J=6.3 Hz), 1.29-1.34 (m, 1H, CH), 1.62-1.73 (m, 3H, CH+CH₂), 1.93-2.00 (m, 1H, CH), 2.05-2.09 (m, 2H, CH₂), 4.82-4.83 (m, 1H, CH).

2g: 4-*n*-Propyl-1-trimethylsilyloxy-1-cyclohexene¹⁶

 v_{max} (DCM): 1670 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.18 (s, 9H, Si(CH₃)₃), 0.90 (t, 3H, CH₃, J=7.2 Hz), 1.21-1.37 (m, 5H, CH+2xCH₂), 1.44-1.49 (m, 1H, CH), 1.63-1.69 (m, 1H, CH), 1.72-1.78 (m, 1H, CH), 1.93-2.00 (m, 1H, CH), 2.05-2.12 (m, 2H, CH₂), 4.82-4.84 (m, 1H, CH).

2h: 4-*t*-Butyl-1-trimethylsilyloxy-1-cyclohexene^{11,16,18}

 v_{max} (DCM): 1672 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.19 (s, 9H, Si(CH₃)₃), 0.90 (s, 9H, 3xCH₃), 1.21-1.29 (m, 2H, CH₂), 1.78-1.85 (m, 2H, CH₂), 1.98-2.09 (m, 3H, CH+CH₂), 4.84-4.86 (m, 1H, CH).

2i: 4-Phenyl-1-trimethylsilyloxy-1-cyclohexene^{17,18}

 v_{max} (DCM): 1669 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.24 (s, 9H, Si(CH₃)₃), 1.86-1.93 (m, 1H, CH), 1.96-1.99 (m, 1H, CH), 2.06-2.11 (m, 1H, CH), 2.19-2.34 (m, 3H, CH+CH₂), 2.76-2.78 (m, 1H, CH), 4.97-4.98 (m, 1H, CH), 7.19-7.34 (m, 5H, C₆H₅).

2j: (3,4-Dihydro-1-naphthyloxy)trimethylsilane^{7c,10}

 v_{max} (DCM): 1638 cm⁻¹.

δ_H (400 MHz, CDCl₃): 0.38 (s, 9H, Si(CH₃)₃), 2.42-2.47 (m, 2H, CH₂), 2.89 (t, 2H, CH₂, J=7.8 Hz), 5.32 (t, 1H, CH, J=4.6 Hz), 7.21-7.36 (m, 3H, 3xArCH), 7.54 (d, 1H, ArCH, J=7.4).

2k: Z-4-Chloro-1-phenyl-1-trimethylsilyloxybut-1-ene

Single isomer, tentatively assigned as Z on comparison to the spectrum for **2l** (below) and from comparison to references 5, 9, 19, and 20.

 v_{max} (DCM): 1649 cm⁻¹.

 $δ_{\rm H}$ (400 MHz, CDCl₃): 0.15 (s, 9H, Si(CH₃)₃), 2.68 (q, 2H, CH₂, J=7.1 Hz), 3.59 (t, 2H, CH₂, J=7.15 Hz), 5.27 (t, 1H, CH, J=7.1 Hz), 7.26-7.34 (m, 3H, 3xArCH), 7.47 (dd, 2H, 2xArH, J= 6.8, 1.5 Hz). $δ_{\rm C}$ (100 MHz, CDCl₃): 0.8, 29.9, 44.4, 106.6, 125.8, 128.1, 128.3, 138.9, 151.6. HRMS: *m/z* calculated for C₁₃H₁₉ClOSi: ³⁵Cl 254.0894 ³⁷Cl 256.0864 Found: ³⁵Cl 254.0890 ³⁷Cl 256.0839

2l: 1-Phenyl-1-silyloxyprop-1-ene^{5,9,19,20}

v_{max} (DCM): 1686, 1652 cm⁻¹.

δ_H (400 MHz, CDCl₃): Z-isomer: 0.17 (s, 9H, Si(CH₃)₃), 1.76 (d, 3H, CH₃, J=6.9 Hz), 5.35 (q, 1H, CH, J=6.9 Hz), 7.23-7.49 (m, 5H, 5xArCH); *E*-isomer: 0.15 (s, 9H, Si(CH₃)₃), 1.73 (d, 3H, CH₃, J=7.3 Hz), 5.13 (q, 1H, CH, J=7.3 Hz), 7.23-7.49 (m, 5H, 5xArCH).

4. References

- 1) Commercially available from the Aldrich Chemical Co., CAS# [2633-66-1], catalogue no. 227234.
- 2) B. E. Love and E. G. Jones, J. Org. Chem., 1999, 64, 3755.
- 3) B. J. Wakefield, in Organomagnesium Methods in Organic Synthesis, Academic Press, London, 1995.
- 4) For additional preparations of Mes₂Mg, including crystal structures, see: a) W. Seidel and I. Bürger, Z. *Anorg. Allg. Chem.*, 1978, 447, 195; b) K. M. Waggoner and P. P. Power, *Organometallics*, 1992, 11, 3209; c) D. M. Knotter, D. M. Grove, W. J. J. Smeets, A. L. Spek and G. van Koten, *J. Am. Chem. Soc.*, 1992, 114, 3400.
- 5) D. Bonafoux, M. Bordeau, C. Biran, P. Cazeau and J. Dunogues, J. Org. Chem., 1996, 61, 5532.
- 6) H. O. House, L. J. Czuba, M. Gall and H. D. Olmstead, J. Org. Chem., 1969, 34, 2324.
- 7) a) Commercially available from Aldrich Chemical Co., CAS# [6651-36-1], catalogue no. 144819; b)
- Commercially available from Aldrich Chemical Co., 2006 CAS# [19980-43-9], catalogue no. 283126; c)
- Commercially available from Aldrich Chemical Co., CAS# [38858-72-9], catalogue no. 540390.
- 8) I. Kopka and M. W. Rathke, J. Org. Chem., 1981, 46, 3771.
- 9) C. H. Heathcock, S. K. Davidsen, K. T. Hug and L. A. Flippin, J. Org. Chem., 1986, 51, 3027.
- 10) R. Rathore and J. K. Kochi, J. Org. Chem., 1996, 61, 627.
- 11) C. M. Cain, R. P. C. Cousins, G. Coumbarides and N. S. Simpkins, Tetrahedron, 1990, 46, 523.
- 12) H. Kim, R. Shirai, H. Kawasaki, M. Nakajima and K. Koga, Heterocycles, 1990, 30, 307.
- 13) N. S. Simpkins, J. Chem. Soc., Chem. Commun., 1986, 88.
- 14) P. Dampawanand and W. W. Zajac, Jr., J. Org. Chem., 1982, 47, 1176.
- 15) G. M. Rubottom and H. D. Juve, Jr., J. Org. Chem., 1983, 48, 422.
- 16) K. W. Henderson, W. J. Kerr and J. H. Moir, Tetrahedron, 2002, 58, 4573.
- 17) C.-D. Graf, C. Malan and P. Knochel, Angew. Chem. Int. Ed., 1998, 37, 3014.
- 18) C.-D. Graf, C. Malan, K. Harms and P. Knochel, J. Org. Chem., 1999, 64, 5581.
- 19) C. H. Heathcock; C. T. Buse, W. A. Kleschick, M. C. Pirrung, J. E. Sohn and J. Lampe, *J. Org. Chem.*, 1980, **45**, 1066.
- 20) F. A. Davis, A. C. Sheppard, B.-C. Chen and M. S. Haque, J. Am. Chem. Soc., 1990, 112, 6679.