Supplementary Material

Liquid Crystals Carrying Stereodefined Vicinal Difluoro- and Trifluoro-Alkyl Motifs

Marcello Nicoletti\textsuperscript{[a]}, Matthias Bremer\textsuperscript{[b]}, Peer Kirsch*\textsuperscript{[c]}, David O’Hagan*\textsuperscript{[a]}

\textsuperscript{[a]} School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK. E-mail: dol@st-andrews.ac.uk

\textsuperscript{[b]} Merck KGaA, Liquid Crystals Division, Frankfurter Str. 250 D-64271 Darmstadt, Germany. E-mail: matthias.bremer@merck.de

\textsuperscript{[c]} Display Reliability & Cell Technology Laboratory, Liquid Crystal Technical Center, Merck Ltd. Japan, 4084 Nakatsu, Aikawa-machi, Aiko-gun, Kanagawa 243-0303, Japan. E-mail: peer_kirsch@merck.co.jp

Experimental Methods

General methods

Dichloromethane and methanol were distilled from calcium hydride. Tetrahydrofuran was distilled from sodium wire. All other commercial reagents and solvents were purchased in synthetic quality and were used as supplied. Reactions were conducted in oven-dried glassware under nitrogen atmosphere with magnetic stirring. Reactions were...
monitored by thin-layer chromatography using Merck Kieselgel 60 plates; visualisation was achieved by inspection under short-wave UV light followed by staining with potassium permanganate or phosphomolybdic acid dip. Flash chromatography was performed using Merck Kieselgel 60 silica gel; eluting solvents are quoted as volume/volume mixtures.

Melting points were determined using a Griffin melting point apparatus and are uncorrected. Infrared spectra were recorded as thin films on sodium chloride plates using a Perkin-Elmer Spectrum GX FT-IR instrument. Nuclear magnetic resonance spectra were recorded using a Bruker AV-500, a Bruker AV-400, a Bruker AV-300 or a Varian Unity Plus 300 instrument.

The starting materials olefin 5 and aldehyde 9 were obtained from Merck. Merck KGaA, Liquid Crystals Division, Frankfurter Str. 250 D-64271 Darmstadt, Germany.

Preparation of Liquid crystal rac-3.
The preparation of rac-3 described below outlines in detail the method by separation and purification of both diastereoisomers of intermediates 7 and 8. This allowed individual characterisation of the purified diastereoisomers. For practical purposes this separation is not necessary (see Scheme 1 in text).

Preparation of epoxide 6:A solution of 5 (24.8 g, 100 mmol) and 3-chloro perbenzoic acid (27.1 g, 110 mmol; 70% purity) in CH₂Cl₂ (120 ml) was stirred at 0°C for 2 h. Then, after
addition of 10% w/w aqueous solution of Na$_2$SO$_3$ (50 ml) the mixture was stirred for further 20 min at 0°C. The organic layer was separated, washed twice with saturated aqueous NaHCO$_3$ (100 ml each) and evaporated to dryness. The crude product was recrystallized from n-pentane at 0°C to give 6 (20.3 g, 77%) as colourless crystals (99.6% purity by HPLC). $^1$H NMR (500 MHz, CDCl$_3$, 303 K): $\delta_H = 2.83-2.76$ (mc, 1H), 2.42-2.39 (mc, 1H), 1.93-1.87 (m, 1H), 1.79-1.65 (m, 7H), 1.58-1.53 (m, 1H), 1.36-1.22 (m, 5H), 1.18-0.80 (m, 16H); IR (KBr): $\nu_{\text{max}}$/cm$^{-1}$ = 2999 (m), 2952 (s), 2908 (s), 2849 (s), 1477 (w), 1465 (w), 1441 (m), 1375 (w), 1222 (w), 1130 (w), 1057 (w), 1011 (w), 996 (m), 917 (w), 856 (m), 720 (w), 677 (w), 490 (w), 433 (w); MS (EI, 70 eV): $m/z$ (%) = 218 (100), 190 (19), 175 (12), 135 (11), 123 (15), 109 (18), 95 (47), 81 (44), 69 (46), 55 (44).

Preparation of fluorohydrins 7a and 7b: A solution of epoxide 6 (10.0 g, 38 mmol) in CH$_2$Cl$_2$ (50 ml) was treated with 65% HF-pyridine (11.4 ml, 76 mmol) at -5°C for 4 h. The mixture was poured into an excess of 5% (w/v) aqueous NaHCO$_3$ in order to neutralize the hydrofluoric acid. The organic layer was separated, washed with aqueous NH$_4$Cl solution, dried over Na$_2$SO$_4$ and evaporated to dryness. The residue was purified by chromatography (silica gel; n-heptane/ethyl acetate 7:1), furnishing the two isomers 7a (fraction 1: 2.7 g, 25%; 99.4% purity by HPLC) and 7b.
(fraction 2: 3.0 g, 28%; 93.0% purity by HPLC) as colourless crystals.

7a: $^1$H NMR (500 MHz, CDCl$_3$, 303 K): $\delta_H = 4.84$-4.59 (mc, 1H, CHF), 3.57-3.46 (mc, 1H, CHOH), 2.07-2.05 (m, 1H), 1.85-1.50 (m, 6H), 1.40-0.80 (m, 16H); $^{19}$F NMR (235 Hz, CDCl$_3$, 300 K): $\delta_F = -181.65$ (mc); MS (EI, 70 eV): m/z (%) = 237 (100), 219 (28), 137 (12), 123 (24), 109 (18), 95 (35), 81 (36), 79 (11), 69 (36), 67 (21), 55 (31).

7b: $^1$H NMR (500 MHz, CDCl$_3$, 303 K): $\delta_H = 4.24$-4.00 (mc, 1H, CHF), 3.96-3.84 (mc, 1H, CHOH), 2.06-1.68 (m, 9H), 2.07-1.97 (m, 1H), 1.82-1.45 (m, 9H), 1.37-0.80 (m, 21H); $^{19}$F NMR (235 Hz, CDCl$_3$, 300 K): $\delta_F = -205.57$ (dt, $J = 48.3$ Hz, $J = 18.6$ Hz); MS (EI, 70 eV): m/z (%) = 266 (18), 246 (23), 240 (52), 206 (14), 125 (34), 114 (20), 95 (36), 83 (48), 81 (48), 69 (77), 55 (51), 45 (100).
Preparation of triflates 8a: A solution of 7a (2.0 g, 7.0 mmol) in CH₂Cl₂ (50 ml) was treated with pyridine (0.82 ml) at -40°C. After 5 min, triflic anhydride (2.18 g, 7.7 mmol) was added dropwise. The mixture was stirred for 1 h at -40°C, then it was allowed to warm up to room temperature and stirred for additional 4 h. Cold n-heptane was added, and the precipitate was filtered off and discarded. The filtrate was evaporated to dryness to furnish crude 8a (2.5 g, 80%; 93% purity by HPLC) as a colourless solid.

8b: An analogous procedure was applied to 7b (2.6 g, 9.1 mmol), yielding 8b (2.6 g, 74%; 91% purity by HPLC) as colourless crystals. ¹H NMR (500 MHz, CDCl₃, 303 K): δ_H = 5.19-5.04 (mc, 1H), 4.46-4.23 (mc, 1H), 2.08-2.01 (m, 1H), 1.83-1.43 (m, 11H), 1.35-0.80 (m, 18H); ¹³C NMR (75 MHz, CDCl₃, 303 K): δ_C = 118.9 (quart, J = 319.4 Hz, SO₂CF₃), 98.9, 96.0, 96.6, 86.2, 43.4 (d, J = 27.3 Hz), 40.2, 39.4 (d, J = 19.1 Hz), 38.0, 33.9, 30.4, 29.4 (d, J = 17.0 Hz), 28.8 (dd, J = 17.3 Hz, J = 6.2 Hz), 20.4, 15.1 (d, J = 6.7 Hz), 14.8; ¹⁹F NMR (235 Hz, CDCl₃, 300 K): δ_F = -73.48 (s, 3F, SO₂CF₃), -199.57 (mc, 1F); MS (EI, 70 eV): m/z (%): 416 (3.6) [M⁺], 270 (6), 207 (6), 125 (100), 95 (11), 83 (57), 69 (85), 55 (30).
**Liquid crystal rac-3**: A solution of triflate 8a (7.2 g, 16 mmol; 93% purity by HPLC) in THF (250 ml) was treated at 0°C dropwise via a syringe with tetrabutyl ammonium fluoride (1 M solution in THF; 17.6 ml, 17.6 mmol). The reaction was monitored by TLC for 2 h until the starting material was consumed. Then, the mixture was diluted with brine, extracted twice with methyl tert-butyl ether (30 ml each), and the solvent was evaporated. The crude product was purified by chromatography (silica gel; n-heptane/ethyl acetate 25:1) to furnish rac-3 (1.70 g, 37%; 99.5% purity by HPLC) as colourless crystals. Starting from 8b (2.2 g, 5.3 mmol) the analogous procedure yielded 0.40 g (27%) of rac-3. For mesophases and electrooptical properties see Table 1. 

\[ ^1H\text{ NMR (500 MHz, CDCl}_3, 303 K): \delta_H = 4.93-4.62 (mc, 1H), 4.18-3.85 (mc, 1H), 2.00-1.90 (m, 1H), 1.83-1.63 (m, 8H), 1.47-1.23 (m, 5H), 1.17-0.68 (m, 16H); \]

\[ ^13C\text{ NMR (75 MHz, CDCl}_3, 303 K): \delta_C = 98.1 (dd, J = 178.9 Hz, J = 19 Hz), 88.2 (dd, J = 173.4 Hz, J = 20.8 Hz), 43.1 (d, J = 25.4 Hz), 39.8, 38.4 (dd, J = 19.7 Hz, J = 4.2 Hz), 37.6, 33.5, 30.0, 29.2 (d, J = 18.0 Hz), 28.7 (d, J = 6.4 Hz), 28.1 (d, J = 4.0 Hz), 20.0, 16.4 (dd, J = 23.2 Hz, J = 7.2 Hz), 14.4; \]

\[ ^19F\text{ NMR (235 Hz, CDCl}_3, 300 K): \delta_F = -191.02 (mc, 1F), -202.50 (mc, 1F); MS (EI, 70 eV): m/z (%) = 286 (44)[M'] , 160 (37), 125 (73), 83 (69), 81 (60), 69 (100), 67 (23), 55 (45). \]

HRMS(EI) calc for C₁₈H₃₂F₂ (M') 286.2478 found (M') 286.2471.
$^{19}$F-NMR or rac-3 showing both fluorine signals and a single diastereoisomer.
Preparation of Liquid crystal rac-4.

Preparation of 10: Propyne gas (4.3 g, 93 mmol) was bubbled through a solution of n-butyl lithium (15% in n-hexane; 58 ml) in THF (100 ml) at -78°C for 30 min. CeCl₃ (pearls – 10 mesh; 25.2 g, 101 mmol) was placed in a three-neck flask and heated in vacuo to 140°C for 2 h. After cooling down, dry THF was added to form a suspension which was cooled to -78°C. To this solution, the previously prepared propynyl lithiu solution was added at -78°C over 1 h. Then, a cooled (-78°C) solution of the propylbicyclohexyl carbaldehyde 9 in THF (200 ml) was added dropwise over 2 h, and stirring was continued until TLC monitoring (n-hexane/ethyl acetate 3:1) indicated complete consumption of the starting material. After addition of saturated aqueous NH₄Cl the mixture was allowed to warm up to room temperature. It was extracted with methyl tert-butyl ether, and the extract was washed with water and brine, dried over MgSO₄ and concentrated to dryness. The residue was filtered through a short dad of silica gel (n-heptane/ethyl acetate 5:1) to furnish the alcohol 10 (7.0 g, 27%; 99% purity by HPLC) as a colourless solid. ¹H NMR (500 MHz, CDCl₃, 303 K): δ_H = 4.10 (br. m, 1H), 1.95-1.53 (m, 12H), 1.51-0.82 (m, 19H); ¹³C NMR (75 MHz, CDCl₃, 303 K): δ_C = 81.4, 79.2, 67.3, 44.4, 43.2, 43.1, 39.7, 37.5, 3.4, 30.0, 29.2, 28.6, 28.1, 19.9, 14.2, 3.4; MS (EI, 70 eV): m/z (%)

\begin{align*}
\text{m/z} & \quad \%
\end{align*}
\[ \text{ESI} \]

\text{This journal is (c) The Royal Society of Chemistry 2007}

\[ \text{9} \]

\[ \text{11} \]

\text{Preparation of allylic alcohol 11:} Propargylic alcohol 10 (12.0 g, 43 mmol) in THF (25 ml) was added dropwise to a suspension of LiAlH}_4 (4.04 g, 106 mmol) in THF (50 ml) at 0°C over a period of 10 min. The mixture was refluxed for 18 h until GC-MS analysis indicated the full consumption of the starting material. The reaction was quenched by careful addition (under ice-cooling) with water (3 ml). The precipitated solid was washed with methyl tert-butyl ether. The organic extracts were collected and evaporated to dryness. The crude product was purified by chromatography (silica gel; n-heptane/ethyl acetate 6:1) to yield 11 as a colourless solid (7.0 g, 59%). \text{\textsuperscript{1}H NMR (500 MHz, CDCl}_3, 303 K): } \delta = 5.66-5.57 (m, 1H), 5.52-5.44 (m, 1H), 3.74 (br. t, \textit{J} = 6.8 \text{ Hz}, 1H), 1.94-1.89 (m, 1H), 1.80-1.65 (m, 10H), 1.40-1.25 (m, 4H), 1.16-1.10 (m, 3H), 1.05-0.80 (m, 13H); \text{\textsuperscript{13}C NMR (75 MHz, CDCl}_3, 303 K): } \delta = 132.7, 127.3, 77.8, 43.8, 43.3, 43.2, 39.7, 33.5, 30.0, 29.6, 29.5, 28.8, 19.9, 17.6, 14.3; \text{MS (EI, 70 eV): } m/z (\%) = 278 (23) [M'], 260 (17), 207 (13), 125 (13), 111 (13), 83 (35), 71 (100), 55 (31).
Preparation of epoxides 12a and 12b: A solution of allylic alcohol 11 (7.0 g, 25 mmol) and 3-chloro perbenzoic acid (6.9 g, 28 mmol; 70% purity) in CH₂Cl₂ (25 ml) was stirred at 0°C for 2 h. Then, after addition of 10% (w/v) aqueous solution of Na₂SO₃ (50 ml) the mixture was stirred for additional 20 min at 0°C. The organic layer was separated, washed twice with saturated aqueous NaHCO₃ (20 ml each), dried over MgSO₄ and evaporated to dryness. The crude product was recrystallized from n-pentane at 0°C to give a mixture of 12a and 12b (7.0 g, 95%) as a 3:1 mixture as colourless crystals. It is assumed that the major isomer is the syn isomer 12a following from our previous studies and the well known Henbest effect.

¹H NMR (500 MHz, CDCl₃, 303 K): δH = 3.58 (mc, 1H), 3.15-3.05 (m, 2H), 2.94 (mc, 1H), 2.78-2.72 (m, 2H), 2.00-0.80 (m, 2 x 3H); ¹³C NMR (75 MHz, CDCl₃, 303 K): δC = 75.5, 72.2, 61.3, 60.4, 52.9, 50.8, 43.2, 43.1, 42.2, 41.6, 39.7, 37.5, 35.5, 29.9, 29.6, 29.5, 29.4, 28.8, 28.7, 28.4, 19.9, 17.0, 14.2; MS (EI, 70 eV): m/z (%) = 294 (2) [M⁺], 276 (10), 206 (12), 151 (20), 135 (10), 123 (33), 109 (43), 95 (50), 88 (20), 81 (73), 69 (100), 58 (28), 55 (73).
Fluorohydrins 13a and 13b: The 3 : 1 diastereoisomeric mixture of expoxides 12a and 12b (7.0 g, 24 mmol) in CH₂Cl₂ (100 ml) was treated with 65% HF-pyridine (4.4 ml) at -5°C for 4 h. The reaction mixture was poured into an excess of 5% (w/v) aqueous NaHCO₃ in order to neutralize the HF. The organic layer was separated, washed with aqueous NH₄Cl, dried over MgSO₄ and evaporated to dryness. The crude product was chromatographed over silica gel (n-heptane/ethyl acetate 3:1) to yield 6.0 g (79%) of a 3 : 1 mixture of 13a and 13b as a colourless solid. ¹H NMR (500 MHz, CDCl₃, 303 K): δ H = 4.82-4.53 (m, 2 x 1H), 4.06-3.38 (m, 2 x 2H), 2.4-0.75 (m, 2 x 3H); ¹⁹F NMR (235 Hz, CDCl₃, 300 K): δ F = -181.86 (m, 1F), -183.05 (m, 1F).
Cyclic sulfates 14a and 14b: The 3 : 1 mixture of fluorohydrin diastereoisomers 13a and 13b (3.15 g, 10 mmol) in CH₂Cl₂ (50 ml) was treated with pyridine (1.2 ml) at room temperature. After cooling down to 0°C, SOCl₂ (0.87 ml, 12 mmol) was added dropwise via a syringe. The mixture was stirred at 0°C for 30 min, then saturated aqueous NaHCO₃ as added. The separated organic layer was dried over MgSO₄, and the solvent was removed. The crude cyclic sulfite was dissolved in acetonitrile (20 ml). First NaIO₄ (5.36 g, 25 mmol) was added, followed by a catalytic quantity of RuCl₃·3H₂O (20 mg) and water (18 ml). The heterogeneous mixture was stirred vigorously at 0°C until no starting material was detectable by TLC (4 h). After addition of diethyl ether (20 ml), the organic layer was separated, washed with 5% (w/v) aqueous NaHCO₃, dried over MgSO₄, filtered over a pad of silica gel and evaporated to dryness. The crude product was chromatographed over silica gel (n-heptane/ethyl acetate 8:1) to obtain the two diastereomers 14a (0.8 g, 21%) and 14b (1.2 g, 32%) as colourless solids. For preparative purposes a sample of 14a was used contaminated with 14b (~10%)

14a: ¹H NMR (500 MHz, CDCl₃, 303 K): δH = 4.75 (dt, J = 44.0 Hz, J = 7.0 Hz, 1H), 4.60-4.54 (m, 2H), 1.97 (d, J = 15.0 Hz, 1H), 1.86-1.65 (m, 10H), 1.48 (dd, J = 28.2 Hz, J
= 7.9 Hz, 3H), 1.33-0.80 (m, 16H); $^{13}$C NMR (75 MHz, CDCl$_3$, 303 K): $\delta_C = 88.4$ (d, $J = 172.7$ Hz), 88.3, 83.4 (d, $J = 29.8$ Hz), 43.3 (d, $J = 19.2$ Hz), 40.9, 40.1, 38.0, 33.8, 30.4, 29.4, 29.0 (d, $J = 13.3$ Hz), 27.8, 20.4, 17.3 (d, $J = 21.7$ Hz), 14.8; $^{19}$F NMR (235 Hz, CDCl$_3$, 300 K): $\delta_F = -186.21$ (mc, 1F); MS (EI, 70 eV): $m/z$ (%) = 376 (20) [M$^+$], 278 (14), 153 (19), 125 (85), 95 (14), 83 (78), 69 (100), 55 (27).

14b: $^1$H NMR (500 MHz, CDCl$_3$, 303 K): $\delta_H = 5.06$ (dt, $J = 45.8$ Hz, $J = 8.5$ Hz, 1H), 4.78-3.72 (m, 2H), 2.02 (d, $J = 15.0$ Hz, 1H), 1.92-1.66 (m, 10H), 1.53 (dd, $J = 28.0$ Hz, $J = 7.0$ Hz, 3H), 1.33-0.80 (m, 16H); $^{13}$C NMR (75 MHz, CDCl$_3$, 303 K): $\delta_C = 89.8, 85.8$ (d, $J = 170.6$ Hz), 85.1 (d, $J = 31.6$ Hz), 43.3 (d, $J = 25.7$ Hz), 40.7, 38.0, 37.2, 33.9, 30.4, 30.1, 28.9, 20.4, 18.1 (d, $J = 21.9$ Hz), 14.8; $^{19}$F NMR (235 Hz, CDCl$_3$, 300 K): $\delta_F = -182.07$ (mc, 1F); MS (EI, 70 eV): $m/z$ (%) = 376 (42) [M$^+$], 278 (15), 153 (17), 125 (80), 95 (17), 83 (71), 69 (100), 55 (47).

15: A solution of 14a (1.20 g, 3.19 mmol) in acetonitrile (50 ml) was cooled to 0°C and the treated via a syringe with tetrabutyl ammonium fluoride (1 M solution in THF; 3.73 ml, 3.73 mmol). The reaction was monitored by TLC (silica gel; n-heptane/ethyl acetate 4:1) for 1 h, until the starting material was consumed. Then, the solvent was
evaporated and the residue dissolved in THF (30 ml). Sulfuric acid 98% (330 μl) was added, and the mixture was stirred for 12 h at room temperature. After the addition of saturated aqueous NaHCO₃, the solution was extracted twice with methyl tert-butyl ether (30 ml each) and the combined organic phases were evaporated to dryness. The crude product was purified by chromatography (silica gel; n-heptane/ethyl acetate 10:1) to furnish 15 (500 mg, 50%) as a colourless solid. \(^1\)H NMR (500 MHz, CDCl₃, 303 K): \(\delta_H = 5.00-4.75 \text{ (m, 2 x 1H)}, 4.37-3.99 \text{ (m, 2 x 1H)}, 3.65-3.47 \text{ (m, 2 x 1H)}, 2.10-1.63 \text{ (m, 2 x 10H)}, 1.47-0.80 \text{ (m, 2 x 21H)}; \(^{13}\)C NMR (75 MHz, CDCl₃, 303 K): \(\delta_C = 95.9 \text{ (dd, } J = 171.4 \text{ Hz, } J = 6.8 \text{ Hz)}, 94.5 \text{ (d, } J = 171.4 \text{ Hz)}, 90.5 \text{ (d, } J = 160.1 \text{ Hz)}, 89.1 \text{ (d, } J = 167.6 \text{ Hz)}, 43.2 \text{ (d, } J = 21.1 \text{ Hz)}, 42.6, 39.7, 38.6 \text{ (d, } J = 19.6 \text{ Hz)}, 38.2 \text{ (d, } J = 18.9 \text{ Hz)}, 37.5, 33.4, 31.9, 31.7, 29.9-28.9 \text{ (m), 26.6, 26.0 (d, } J = 4.5 \text{ Hz)}, 25.1 \text{ (d, } J = 4.5 \text{ Hz)}, 22.5, 19.9, 16.9 \text{ (d, } J = 22.7 \text{ Hz)}, 14.2, 13.9; \(^{19}\)F NMR (235 Hz, CDCl₃, 300 K): \(\delta_F = -184.31 \text{ (mc, 1F), -195.70 (mc, 1F), -202.18 (mc, 1F), -204.64 (mc, 1F); MS (EI, 70 eV): m/z (%) = 316 (8)[M’], 298 (10), 276 (30), 269 (13), 249 (98), 125 (59), 123 (59) 109 (23), 95 (47), 83 (75), 81 (78), 69 (100), 55 (62).}

**Triflate 16**: A mixture of 15 (500 mg, 1.58 mmol) in CH₂Cl₂ (20 ml) was treated with pyridine (200 μl) at -40°C. After
5 min, triflic anhydride (300 μl, 2.0 mmol) was added dropwise. The mixture was stirred for 2 h at -40°C, then cold n-heptane (10 ml) was added, and the precipitate was filtered off and discarded. The filtrate was evaporated to dryness to furnish 16 (260 mg, 37%), a material which was used directly without purification.

Liquid crystal rac-4: The preparation of 16 (520 mg, 1.16 mmol) in THF (20 ml) was treated at 0°C dropwise via a syringe with tetrabutylammonium fluoride (1 M solution in THF; 1.16 ml, 1.16 mmol). The reaction was monitored by TLC until the starting material was consumed (~45 min). Then, the mixture was diluted with saturated aqueous NH₄Cl solution, extracted twice with methyl tert-butyl ether (30 ml each), and the solvent was evaporated. The product was purified by chromatography (silica gel; n-heptane/ethyl acetate 25:1) to furnish rac-4 (40 mg, 11%; 90% purity by HPLC, 10% impurity was diastereoisomer 4b - see 19F-NMR) as colourless crystals. The available quantity and the purity of the product was insufficient to determine mesophase sequence and transition temperatures. For virtual clearing point and electrooptical properties see Table 1. ¹H NMR (500 MHz, CDCl₃, 303 K): δH = 4.90-4.63 (m, 1H), 4.54-4.00 (m, 2H), 2.06-1.95 (m, 1H), 1.76-1.57 (m, 8H), 1.47-0.75 (m, 21H); ¹³C NMR (75 MHz, CDCl₃, 303 K): δC = 43.0 (d, J = 24.7 Hz), 39.6, 37.9 (d, J = 16.4 Hz), 37.5, 33.4, 31.7,
$30.0 \text{ (d, } J = 20.5 \text{ Hz)}, 28.9 \text{ (d, } J = 14.6 \text{ Hz)}, 28.2 \text{ (d, } J = 7.1 \text{ Hz)}, 22.5, 19.9, 17.0 \text{ (d, } J = 22.3 \text{ Hz)}, 14.2, 13.9; \ ^{19}\text{F NMR (235 Hz, CDCl}_3, 300 \text{ K): } \delta_{F} = -187.07 \text{ (mc, 1F), } -207.00 \text{ (mc, 1F), } -216.08 \text{ (mc, 1F); MS (EI, 70 eV): } m/z (%) = 318 (2) [M^+], 192 (12), 125 (43), 113 (11), 91 (12), 83 (83), 81 (68), 69 (100), 55 (67).$

$^{19}\text{F-NMR of rac-4 showing a 10\% contamination of isomer rac-4b}$