SUPPLEMENTARY INFORMATION for:

Reactivity of a Coordinatively Unsaturated Cp*Ru(κ²-P,O) Complex

Matthew A. Rankin, Kevin D. Hesp, Gabriele Schatte, Robert McDonald, and Mark Stradiotto*

E-mail: mark.stradiotto@dal.ca

aDepartment of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3 (Canada).
bSaskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9 (Canada).
cX-Ray Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 (Canada).

Contents:

• Experimental Section (general considerations, numbering scheme, synthetic details, and characterization data).

• Crystallographic Solution and Refinement Details.
Experimental Section

General Considerations. All manipulations were conducted in the absence of oxygen and water under an atmosphere of dinitrogen, either by use of standard Schlenk methods or within an mBraun glovebox apparatus, utilizing glassware that was oven-dried (130 °C) and evacuated while hot prior to use. Celite® (Aldrich) was oven-dried for 5 d and then evacuated for 24 h prior to use. The non-deuterated solvents dichloromethane, benzene, and pentane were deoxygenated and dried by sparging with dinitrogen gas, followed by passage through a double-column solvent purification system purchased from mBraun Inc. Dichloromethane was purified over two alumina-packed columns, while benzene and pentane were purified over one alumina-packed column and one column packed with copper-Q5 reactant. Benzene-\textit{d}_6 and toluene-\textit{d}_8 (Cambridge Isotopes) were degassed by using three repeated freeze-pump-thaw cycles and then dried over 4 Å molecular sieves for 24 h prior to use. All solvents used within the glovebox were stored over activated 4 Å molecular sieves. Both [Cp*RuCl]_4 S1 and 1-diisopropylphosphino-2-indanone S2 were prepared using literature procedures, and were dried in vacuo for 24 h prior to use. NaN(SiMe_3)_2 (Aldrich) was dried in vacuo for 24 h prior to use. Hydrogen (99.999%, UHP Grade) and carbon monoxide gases (99.5%, chemically pure grade) were obtained from Air Liquide and were used as received. Whereas PhCN (Aldrich) was degassed by sparging with dinitrogen gas, PhSiH_3 (Strem) was degassed by using three repeated freeze-pump-thaw cycles, and Ph_2SiH_2 (Gelest, shipped under argon) was not degassed, each of these reagents was dried over 4 Å molecular sieves for 24 h prior to use. Variable-temperature NMR experiments were conducted on a Bruker AC-250 spectrometer. Unless otherwise stated, \textit{1}H, \textit{13}C, \textit{29}Si and \textit{31}P NMR characterization data were collected at 300K on a Bruker AV-500 spectrometer operating at 500.1, 125.8, 99.4 and 202.5 MHz (respectively) with chemical shifts reported in parts per million downfield of SiMe_4 (for \textit{1}H, \textit{13}C, and \textit{29}Si) or 85% H_3PO_4 in D_2O (for \textit{31}P). \textit{1}H and \textit{13}C NMR chemical shift assignments are based on data obtained from \textit{13}C-DEPT, \textit{1}H-\textit{1}H COSY, \textit{1}H-\textit{13}C HSQC, and \textit{1}H-\textit{13}C HMBC NMR experiments.
29Si NMR chemical shift assignments are given on the basis of data obtained from 1H-29Si HMQC (1H-coupled experiments were employed in the determination of $^1J_{\text{SiH}}$ values) as well as 1H-29Si HMBC (JHMBC33 experiments were employed in the determination of $^nJ_{\text{SiH}}$ values for $n > 1$) experiments. IR data were collected on a Bruker VECTOR 22 FT-IR instrument. Raman data were collected on powdered samples (sealed in glass capillaries under dry dinitrogen) using a Bruker RFS 100 FT-Raman spectrometer. Elemental analyses were performed by Canadian Microanalytical Service Ltd., Delta, British Columbia, Canada.

Atomic Numbering Scheme Employed:

![Atomic Numbering Scheme](image)

Synthesis of ($\kappa^2-O,1$-diisopropylphosphino-2-indanone)Cp*RuCl. To a glass vial containing a magnetically stirred suspension of [Cp*RuCl]$_4$ (0.72 g, 0.66 mmol) in CH$_2$Cl$_2$ (4 mL) was added a solution of 1-diisopropylphosphino-2-indanone (0.66 g, 2.66 mmol) in CH$_2$Cl$_2$ (4 mL) all at once via Pasteur pipette. The addition caused an immediate color change of the suspension from dark brown to dark red. The vial was then sealed with a PTFE-lined cap and the solution was stirred magnetically for 45 min. 31P NMR data collected on an aliquot of this solution indicated the quantitative formation of the target complex. The CH$_2$Cl$_2$ solvent was then removed in vacuo, yielding an oily dark red solid. The solid was then triturated with pentane (1.5 mL) and the pentane was removed in vacuo. The residue was then washed with pentane (2 x 3 mL) and dried in vacuo to yield ($\kappa^2-O,1$-diisopropylphosphino-2-indanone)Cp*RuCl as an analytically pure orange-pink powder (1.32 g, 2.55 mmol, 96 %). Anal. Calcd. for C$_{25}$H$_{36}$POClRu: C 57.74; H 6.98; N 0.00. Found: C 57.93; H 6.68; N < 0.3. 1H NMR (C$_6$D$_6$): δ 7.03-6.91 (m, 3H, aryl-Hs), 6.62 (d, $^3J_{\text{HH}}$ = 7.0 Hz, 1H, C4-H or C7-H), 5.27 (d,
$^2J_{PH} = 12.0$ Hz, 1H, 3Pr$_2$PC-H), 2.85 (m, 1H, C(H$_a$(H$_b$)), 2.64 (m, 1H, C(H$_a$(H$_b$)), 2.57 (m, 1H, P(CHMe$_c$Me$_b$)), 1.96 (m, 1H, P(CHMe$_c$Me$_d$)), 1.77 (d, $J = 1.5$ Hz, 15H, C$_5$Me$_5$), 1.69 (d of d, $^3J_{PH} = 13.0$ Hz, $^3J_{HH} = 7.5$ Hz, 3H, P(CHMe$_c$Me$_b$)), 1.32 (d of d, $^3J_{PH} = 17.5$ Hz, $^3J_{HH} = 7.0$ Hz, 3H, P(CHMe$_c$Me$_d$)), 0.86 (d of d, $^3J_{PH} = 14.0$ Hz, $^3J_{HH} = 7.0$ Hz, 3H, P(CHMe$_c$Me$_d$)), 0.58 (d of d, $^3J_{PH} = 12.0$ Hz, $^3J_{HH} = 7.0$ Hz, 3H P(CHMe$_c$Me$_d$)); 13C $\{^1$H$\}$ (C$_6$D$_6$): δ 226.2 (m, C$_2$), 138.5 (d, $J = 8.1$ Hz, C$_3$a or C$_7$a), 137.8 (d, $J = 3.3$ Hz, C$_7$a or C$_3$a), 127.3 (C$_5$ or C$_6$), 127.0 (aryl-CH), 125.4 (C$_4$ or C$_7$), 124.8 (aryl-CH), 79.8 (C$_5$Me$_5$), 60.8 (3Pr$_2$PC-H), 41.6 (CH$_2$), 27.5 (d, $^1J_{PC} = 11.2$ Hz, P(CHMe$_c$Me$_d$)), 26.4 (d, $^1J_{PC} = 16.3$ Hz, P(CHMe$_c$Me$_b$)), 21.6 (P(CHMe$_c$Me$_b$)), 20.9 (d, $^2J_{PC} = 9.7$ Hz, P(CHMe$_c$Me$_b$)), 18.2 (d, $^2J_{PC} = 4.8$ Hz, P(CHMe$_c$Me$_d$)), 17.6 (P(CHMe$_c$Me$_d$)), 11.3 (C$_5$Me$_5$); 31P $\{^1$H$\}$ NMR (C$_6$D$_6$): δ 100.5. Slow evaporation of a concentrated benzene solution of (κ2-P,O-1-diisopropylphosphino-2-indanone)Cp*RuCl produced a crystal (benzene hemisolvate) suitable for X-ray diffraction analysis.

Synthesis of 1a$_2$·(μ-N$_2$). To a glass vial containing a magnetically stirred deep red suspension of (κ2-P,O-1-diisopropylphosphino-2-indanone)Cp*RuCl (0.10 g, 0.19 mmol) in benzene (8 mL), was added solid NaN(SiMe$_3$)$_2$ (0.037 g, 0.20 mmol) all at once. The vial was sealed with a PTFE-lined cap and magnetic stirring was initiated. Over the course of several seconds, the reaction mixture became dark green. After 45 min, 31P NMR data collected on an aliquot of this crude reaction mixture indicated the quantitative formation of 1a$_2$·(μ-N$_2$). The solution was filtered through Celite and the benzene solvent and other volatile materials were removed in vacuo, yielding an oily dark green solid. The residue was triturated with pentane (2 x 1 mL), after which the pentane was removed in vacuo. Pentane (2 x 3 mL) was then added to wash the solid, and the dark green supernatant solution was removed carefully via Pasteur pipette, leaving a greenish-brown solid. Analysis of 31P NMR data collected on the pentane washings indicated relatively minor amounts of 1a$_2$·(μ-N$_2$) and as such these washings were discarded. The residue was dried in vacuo, yielding 1a$_2$·(μ-N$_2$) as a greenish-beige powder (0.074 g, 0.074 mmol, 78 %). Anal. Calcd. for C$_{50}$H$_{70}$P$_2$O$_2$N$_2$Ru$_2$: C 60.32; H 7.09; N 2.82. Found: C 60.34; H 7.10; N 2.10.
The somewhat low % N value determined for 1a2·(µ-N2) is in keeping with some other Ru dinitrogen complexes.\(^\text{S4}\) \(^1\)H NMR (500.1 MHz, 300K, C₆D₆, \textit{under dinitrogen}): \(\delta\) 7.38-6.80 (broad m, 4H, aryl-Hs), 3.35-3.17 (broad m, 2H, CH₂), 2.62-2.38 (broad m, 2H, P(CHMe₂)₂), 1.71-0.93 (broad m, 27H, C₅Me₅ and P(CHMe₂)₂). \(^{31}\)P\(^{\{1\}H}\) NMR (202.5 MHz, 300K, C₆D₆, \textit{under dinitrogen}): \(\delta\) 50.1 (\(\Delta\nu_{1/2} = 213\) Hz). \(^1\)H NMR (250.1 MHz, 300K, toluene-\(d₈\), \textit{degassed sample}): \(\delta\) 7.43-6.80 (broad m, 4H, aryl-Hs), 3.28-3.05 (broad m, 2H, CH₂), 2.77-0.53 (broad m, 29H, P(CHMe₂)₂ and C₅Me₅ and P(CHMe₂)₂); \(^{31}\)P\(^{\{1\}H}\) NMR (101.3 MHz, 300K, toluene-\(d₈\), \textit{degassed sample}): \(\delta\) 44.9 (\(\Delta\nu_{1/2} = 240\) Hz). No useful information could be derived from the \(^{13}\)C NMR spectrum of 1a2·(µ-N₂) (125.8 MHz, 300K, C₆D₆, \textit{under dinitrogen}). Raman (\textit{cm}⁻¹) \(\nu(\text{N}_2):\) 2042. Layering of a C₆D₆ solution of 1a2·(µ-N₂) with pentane and slow evaporation of the resultant mixture over the course of approximately two weeks produced a crystal suitable for X-ray diffraction analysis.

\textit{Variable-temperature behavior of 1a2·(µ-N₂).} For samples of 1a2·(µ-N₂) dissolved in toluene-\(d₈\) that were sealed under an atmosphere of dinitrogen, the initially deep green solutions (300K) turned to red-brown (reversibly) upon cooling below 250K; conversely, only deep green solutions were observed over this temperature range for samples that had been thoroughly degassed. Low-temperature NMR data for 1a2·(µ-N₂): \(^1\)H NMR (250.1 MHz, 223K, toluene-\(d₈\), \textit{under dinitrogen}): \(\delta\) 7.19-6.96 (m, 4H, aryl-Hs), 3.60-3.15 (AB multiplet, 2H, C(Hₐ)(H₉)), 2.86 (m, 1H, P(CHMeₐMe₉)), 2.04 (m, 1H, P(CHMe₈Me₉)), 1.78-0.97 (m, 27H, C₅Me₅ and P(CHMeₐMe₉) and P(CHMe₈Me₉)); \(^{31}\)P\(^{\{1\}H}\) NMR (101.3 MHz, 223K, toluene-\(d₈\), \textit{under dinitrogen}): \(\delta\) 52.1 (\(\Delta\nu_{1/2} = 9\) Hz); \(^{31}\)P\(^{\{1\}H}\) NMR (101.3 MHz, 223K, toluene-\(d₈\), \textit{degassed sample}): \(\delta\) 52.0 (\(\Delta\nu_{1/2} = 10\) Hz), 39.1 (\(\Delta\nu_{1/2} = 65\) Hz) (1:1 ratio). We are hesitant to provide a definitive interpretation of these temperature-dependent observations. However, it is feasible that in solution 1a2·(µ-N₂) exists in a dynamic equilibrium with 1a·(σ-N₂), whereby the position of this equilibrium is dependent both on temperature and on the availability of dissolved dinitrogen.\(^\text{S5}\) Furthermore, some aspects of the observed temperature-dependent lineshape changes may
be attributable to the exchange of free and bound N_2 in both $1a_2'(\mu-N_2)$ and $1a'(\sigma-N_2)$, as well as restricted rotation about the Ru-N-N-Ru axis in $1a_2'(\mu-N_2)$ at low temperatures.

Synthesis of 1a·CO. Within a glovebox, a J. Young NMR tube was charged with $1a_2'(\mu-N_2)$ (0.045 g, 0.045 mmol) and 0.8 mL of C_6D_6. The tube was sealed and the solution was mixed by inversion of the tube several times. The tube containing the resulting deep green solution was removed from the glovebox, connected to a Schlenk line, and degassed via three repeated freeze-pump-thaw cycles. An atmosphere of CO was introduced to the NMR tube, upon which the solution was observed to change gradually in color to brown over the course of several min. After 30 min, ^{31}P and 1H NMR data collected on this reaction mixture indicated quantitative conversion to 1a·CO. Upon removal of solvent and other volatile materials *in vacuo*, followed by trituration with pentane (2 x 1.5 mL), 1a·CO was isolated as an analytically pure, tan powder (0.043 g, 0.084 mmol, 93 %). Anal. Calcd. for $C_{26}H_{35}PO_2Ru$: C 61.02; H 6.90; N 0.00. Found: C 61.01; H 6.97; N < 0.3. 1H NMR (C_6D_6): δ 7.22 (m, 1H, C5-H or C6-H), 7.01 (d, $^3J_{HH} = 7.5$ Hz, 1H, C4-H or C7-H), 6.93-6.87 (m, 2H, aryl-Hs), 3.28-3.17 (m, 2H, C(\(Ha\))(\(Hb\))), 2.84 (m, 1H, P(CHMeaMeb)), 2.01 (m, 1H, P(CHMeaMeb)), 1.59 (d, $J = 1.0$ Hz, 15H, C5Me5), 1.38 (d of d, $^3J_{PH} = 16.0$ Hz, $^3J_{HH} = 7.0$ Hz, 3H, P(CHMeaMeb)), 1.23 (d of d, $^3J_{PH} = 11.5$ Hz, $^3J_{HH} = 7.0$ Hz, 3H, P(CHMeaMeb)), 1.02-0.94 (m, 6H, P(CHMeaMeb) and P(CHMeaMeb)); ^{13}C {1H} (C_6D_6): δ 208.6 (d, $^2J_{PC} = 19.1$ Hz, CO), 200.8 (d, $^2J_{PC} = 21.3$ Hz, C2), 146.7 (C3a or C7a), 139.7 (d, $J = 8.6$ Hz, C7a or C3a), 127.2 (C5 or C6), 124.4 (aryl-CH), 120.0 (aryl-CH), 116.4 (C4 or C7), 99.9 (d, $^1J_{PC} = 48.8$ Hz, C3), 94.1 (C5Me5), 38.6 (d, $^3J_{PC} = 8.8$ Hz, C1), 27.0 (d, $^1J_{PC} = 18.6$ Hz, P(CHMeaMeb)), 24.2 (d, $^1J_{PC} = 35.6$ Hz, P(CHMeaMeb)), 19.8 (d, $^2J_{PC} = 6.3$ Hz, P(CHMeaMeb)), 19.8 (d, $^2J_{PC} = 6.3$ Hz, P(CHMeaMeb) or P(CHMeaMeb)), 18.9-18.8 (m, P(CHMeaMeb) and either P(CHMeaMeb) or P(CHMeaMeb)), 10.3 (C5Me5); ^{31}P {1H} NMR (C_6D_6): δ 63.0. FTIR (CsI; cm$^{-1}$) ν(CO): 1903.

Synthesis of 1a·NCPh. To a glass vial containing a magnetically stirred solution of $1a_2'(\mu-N_2)$ (0.11 g, 0.11 mmol) in benzene was added PhCN (0.21 mL, 0.22 mmol) all at once via Eppendorf pipette. A
change in the color of the solution from dark green to orange-red was observed upon the addition of PhCN. The vial was sealed with a PTFE-lined cap, and the solution was stirred for 30 min. 31P NMR data collected on an aliquot of this solution indicated quantitative conversion to $1a\cdot\text{NCPh}$. The solvent and other volatile materials were removed \textit{in vacuo}, yielding an oily dark-red-brown solid. The residue was triturated with pentane (2 x 1.5 mL), and the pentane was removed \textit{in vacuo} to yield $1a\cdot\text{NCPh}$ as an analytically pure, orange-brown powder, 91%. Anal. Calcd. for C$_{32}$H$_{40}$PONRu: C 65.49; H 6.88; N 2.39. Found: C 65.49; H 6.64; N 2.31. 1H NMR (C$_6$D$_6$): δ 7.25 (t, 3J$_{HH}$ = 7.5 Hz, 1H, C5-H or C6-H), 7.16 (m, 1H, C4-H or C7-H), 7.02-6.97 (m, 3H, 2 NC-aryl-Hs and either C7-H or C4-H), 6.85 (t, 3J$_{HH}$ = 7.0 Hz, 1H, C6-H or C5-H), 6.81 (t, 3J$_{HH}$ = 7.0 Hz, 1H, NC-aryl-H), 6.64 (apparent t, 3J$_{HH}$ = 7.5 Hz, 2H, NC-aryl-Hs), 3.44-3.35 (broad s, 2H, C(H$_a$)(H$_b$)), 1.74 (s, 15H, C$_5$Me$_5$), 1.43-1.25 (m, 14H, P(CH$_{Me_a}$Me$_b$) and P(CH$_{Me_a}$Me$_c$) and P(CH$_{Me_c}$Me$_d$) and P(CH$_{Me_b}$Me$_d$)); 13C 1H} (C$_6$D$_6$): δ 199.8 (d, 2J$_{PC}$ = 23.7 Hz, C2), 149.0 (C3a or C7a), 139.0 (d, J = 7.8 Hz, C7a or C3a), 131.6-131.4 (m, NC-aryl-CHs), 129.0 (NC-aryl-CHs), 126.7 (C5 or C6), 123.9 (C4 or C7), 118.7 (C6 or C5), 115.9 (C7 or C4), 113.7 (NC-aryl-C), 98.5 (d, 1J$_{PC}$ = 41.6 Hz, C3), 82.8 (C$_3$Me$_5$), 39.3 (d, 3J$_{PC}$ = 8.1 Hz, C1), 20.9-19.2 (broad m, P(CH$_{Me_a}$Me$_b$) and P(CH$_{Me_a}$Me$_c$) and P(CH$_{Me_c}$Me$_d$) and P(CH$_{Me_b}$Me$_d$)), 10.8 (C$_5$Me$_5$); 31P 1H} NMR (C$_6$D$_6$): δ 53.9.

Synthesis of 1a·(σ-H$_2$). A protocol analogous to that described for the synthesis of 1a·CO was employed, using H$_2$ in place of CO. Introduction of an atmosphere of H$_2$ to a degassed solution of 1a$_2$·(µ-N$_2$) (0.020 g, 0.020 mmol) in toluene-d_8 (0.8 mL) caused the solution to lighten gradually in color from deep green to lime green over the course of several min. After 20 min, 31P and 1H NMR data collected on this reaction mixture indicated the quantitative conversion of 1a$_2$·(µ-N$_2$) into 1a·(σ-H$_2$). Whereas solutions of 1a·(σ-H$_2$) prepared in this manner were found to be stable for a minimum of 8 h, some decomposition (31P NMR) was detected upon standing for 18 h. For freshly prepared solutions of 1a·(σ-H$_2$), removal of volatiles in vacuo led to the quantitative conversion of 1a·(σ-H$_2$) back to 1a$_2$·(µ-
N$_2$) (as determined by 31P NMR analysis of a C$_6$D$_6$ solution of the dried solid that had been prepared under an atmosphere of dinitrogen). 1H NMR (500.1 MHz, 300K, toluene-d_8): δ 7.20 (t, 3J_{HH} = 7.5 Hz, 1H, C5-H or C6-H), 7.01 (d, 3J_{HH} = 7.5 Hz, 1H, C4-H or C7-H), 6.93 (d, 3J_{HH} = 7.0 Hz, 1H, C7-H or C4-H), 6.86 (t, 3J_{HH} = 7.0 Hz, 1H, C6-H or C5-H), 3.25 (s, 2H, CH$_2$), 2.45 (m, 2H, P(CHMe$_a$Me$_b$), 1.64 (s, 15H, C$_5$Me$_5$), 1.19 (d of d, 3J_{PH} = 13.5 Hz, 3J_{HH} = 7.0 Hz, 6H, P(CHMe$_a$Meb)), 1.11 (d of d, 3J_{PH} = 16.0 Hz, 3J_{HH} = 6.5 Hz, 6H, P(CHMe$_a$Me$_b$)), -5.73 (broad s, $\Delta$$\nu$$_{1/2}$ = 23 Hz, 2H, Ru(H$_2$)); 13C {1H} NMR (125.8 MHz, 300K, toluene-d_8): δ 199.9 (m, C2), 146.8 (m, C3a or C7a), 139.9 (m, C7a or C3a), 126.8 (C5 or C6), 124.2 (C4 or C7), 119.7 (C6 or C5), 116.3 (C7 or C4), 81.1 (C$_5$Me$_5$), 38.6 (d, 3J_{PC} = 8.4 Hz, C1), 24.5 (broad m, P(CHMe$_a$Me$_b$)), 19.6-19.3 (broad m, P(CHMe$_a$Me$_b$)), 11.1 (C$_5$Me$_5$); 31P {1H} NMR (202.5 MHz, 300K, toluene-d_8): δ 65.2 (broad m, $\Delta$$\nu$$_{1/2}$ = 180 Hz). The $T_{1(min)}$ relaxation time value (218K, 17 ms, 250 MHz) associated with the σ-H$_2$ unit in 1a·(σ-H$_2$) was obtained by using the inversion-recovery technique.56 Variable-temperature behavior of 1a·(σ-H$_2$). The initially green toluene solution of 1a·(σ-H$_2$) observed at 300K becomes brown in appearance (reversibly) upon cooling below 253K. 1H NMR (250.1 MHz, 223K, toluene-d_8): δ 7.34-6.94 (m, 4H, aryl-Hs), 3.40-3.15 (AB multiplet, 2H, C(He)(H$_b$)), 2.53 (m, 1H, P(CHMe$_a$Me$_b$)), 1.98 (m, 1H, P(CHMe$_c$Me$_d$)), 1.63 (s, 15H, C$_5$Me$_5$), 1.42-0.83 (m, 12H, P(CHMe$_a$Me$_b$) and P(CHMe$_c$Me$_d$)), -6.40 (broad s, $\Delta$$\nu$$_{1/2}$ = 51 Hz, 2H, Ru(H$_2$)); 31P {1H} NMR (101.3 MHz, 223K, toluene-d_8): δ 72.2 ($\Delta$$\nu$$_{1/2}$ = 20 Hz). While 1H and 13C NMR data for 1a·(σ-H$_2$) collected at 300K are consistent with a C$_5$-symmetric structure, the 1H NMR spectrum of 1a·(σ-H$_2$) collected at 223K is in keeping with the C$_1$-symmetry expected for this complex. We tentatively attribute these temperature-dependent NMR features to the exchange of free and bound H$_2$ in 1a·(σ-H$_2$) – a process which is slowed (on the NMR timescale) at 223K.

Synthesis of 2a. To a glass vial containing a magnetically stirred deep green suspension of 1a·(μ-N$_2$) (0.020 g, 0.020 mmol) in C$_6$D$_6$ (2 mL), was added PhSiH$_3$ (0.0051 mL, 0.041 mmol) via microsyringe. The vial was sealed with a PTFE-lined cap and magnetic stirring was initiated. Over the course of several seconds, the reaction mixture became an orange-yellow homogeneous mixture. After 3 h, 31P
NMR data collected on an aliquot of this crude reaction mixture indicated the quantitative formation of 2a. The benzene solvent and other volatile materials were removed in vacuo, yielding an oily orange solid. The residue was triturated with pentane (2 × 1 mL), after which the pentane was removed in vacuo to yield 2a as an orange powder (0.023 g, 0.038 mmol, 95 %). Anal. Calcd. for C$_{31}$H$_{43}$POSiRu: C 62.91; H 7.32; N 0.00. Found: C 62.95; H 7.04; N < 0.3. 1H NMR (C$_6$D$_6$): δ 8.18-8.15 (m, 2H, Siaryl-Hs), 7.42-7.36 (m, 3H, 2 Siaryl-Hs and aryl-H), 7.26 (m, 1H, Siaryl-H), 7.16 (m, 1H, aryl-H), 6.96-6.89 (m, 2H, aryl-Hs), 6.61 (m, 1H, Si-H), 3.26-2.98 (m, 2H, C(H$_a$)(H$_b$)), 2.74-2.61 (m, 2H, P(CHMe$_a$Me$_b$) and P(CHMe$_c$Me$_d$)), 1.73 (s, 15H, C$_5$Me$_5$), 1.09-1.00 (m, 9H, P(CHMe$_a$Me$_b$) and P(CHMe$_c$Me$_d$)), 0.94 (d of d, 3J$_{PH}$ = 16.0 Hz, 3J$_{HH}$ = 7.0 Hz, 3H, P(CHMe$_c$Me$_d$)), -11.14 (d, 1H, J = 34.0 Hz, Ru-H$_a$), -11.92 (apparent d of d, 1H, J = 32.5 Hz, J = 5.0 Hz, Ru-H$_b$); 13C{1H} (C$_6$D$_6$): δ 177.0 (d, 2J$_{PC}$ = 8.6 Hz, C2), 146.5 (C3a or C7a), 145.5 (Siaryl-C), 135.2-135.1 (m, Siaryl-CHs and either C7a or C3a), 128.9 (Siaryl-CH), 128.2-128.1 (Siaryl-CHs), 126.2 (aryl-CH), 123.5 (aryl-CH), 122.5 (aryl-CH), 120.2 (aryl-CH), 103.1 (d, 1J$_{PC}$ = 54.1 Hz, C3), 95.6 (C$_5$Me$_5$), 42.7 (d, 3J$_{PC}$ = 7.7 Hz, C1), 29.1 (d, 1J$_{PC}$ = 25.9 Hz, P(CHMe$_c$Me$_d$)), 27.9 (d, 1J$_{PC}$ = 27.2 Hz, P(CHMe$_a$Me$_b$)), 20.7 (P(CHMe$_c$Me$_d$)), 20.4 (d, 2J$_{PC}$ = 7.9 Hz, P(CHMe$_a$Me$_b$) or P(CHMe$_a$Me$_b$) or P(CHMe$_c$Me$_d$)), 20.3 (P(CHMe$_a$Me$_b$) or P(CHMe$_c$Me$_d$) or P(CHMe$_a$Me$_b$)), 19.0 (d, 2J$_{PC}$ = 5.9 Hz, P(CHMe$_c$Me$_d$) or P(CHMe$_a$Me$_b$) or P(CHMe$_c$Me$_d$)), 11.6 (C$_5$Me$_5$); 31P{1H} NMR (C$_6$D$_6$): δ 67.4; 29Si{1H} NMR (C$_6$D$_6$): δ 60.4 (1H-29Si HMBC/HMQC), 1J$_{SiH}$ = 199.7 Hz (1H-coupled 1H-29Si HMQC), 2J$_{SiH}$ = 9.4 Hz (J-HMBC).

Synthesis of 2b. To a glass vial containing a magnetically stirred deep green suspension of 1a$_2$(µ-N$_2$) (0.060 g, 0.060 mmol) in benzene (8 mL), was added Ph$_2$SiH$_2$ (0.025 mL, 0.13 mmol) via Eppendorf pipette. The vial was sealed with a PTFE-lined cap and magnetic stirring was initiated. Over the course of several seconds, the reaction mixture became an orange-yellow homogeneous mixture. After 15 min, 31P NMR data collected on an aliquot of this crude reaction mixture indicated the quantitative formation of 2b. The benzene solvent and other volatile materials were removed in vacuo, yielding an
oily orange solid. The residue was triturated with pentane (2 x 1 mL), after which the pentane was removed in vacuo to yield 2b as a peach powder (0.079 g, 0.12 mmol, 95 %). Anal. Calcd. for C_{37}H_{47}PdSiRu: C 66.53; H 7.09; N 0.00. Found: C 66.13; H 6.89; N < 0.3. 1H NMR (C_{6}D_{6}): δ 8.03-8.01 (m, 4H, Si-aryl-Hs), 7.41 (d, 3J_{HH} = 8.0 Hz, 1H, C4-H or C7-H), 7.36 (apparent t, 3J_{HH} = 7.0 Hz, 4H, Si-aryl-Hs), 7.27-7.23 (m, 2H, Si-aryl-Hs), 7.13 (m, 1H, aryl-H), 6.96-6.92 (m, 2H, aryl-Hs), 3.17 (s, 2H, P(CHMeaMeb)), 1.67 (s, 15H, C5Me5), 1.09 (d of d, 3J_{PH} = 17.0 Hz, 3J_{HH} = 7.0 Hz, 6H, P(CHMeaMeb)), 0.94 (d of d, 3J_{PH} = 15.5 Hz, 3J_{HH} = 7.0 Hz, 6H, P(CHMeaMeb)), -11.02 (d, 2H, 2J_{PH} = 32.5 Hz, Ru-Hs); 13C{1H} (C_{6}D_{6}): δ 177.1 (d, 2J_{PC} = 9.1 Hz, C2), 146.5 (C3a or C7a), 146.2 (Si-aryl-C), 135.9 (Si-aryl-CHs), 135.1 (d, J = 6.9 Hz, C7a or C3a), 128.4 (Si-aryl-CHs), 127.4 (Si-aryl-CHs), 126.4 (aryl-CH), 123.5 (aryl-CH), 122.4 (C5 or C6), 120.3 (C4 or C7), 103.1 (d, 1J_{PC} = 52.3 Hz, C3), 96.1 (C5Me5), 42.8 (d, 3J_{PC} = 7.4 Hz, C1), 28.6 (d, 1J_{PC} = 26.9 Hz, P(CHMeaMeb)), 20.3 (P(CHMeaMeb)), 19.5 (d, 2J_{PC} = 5.8 Hz, P(CHMeaMeb)), 11.6 (C5Me5); 31P{1H} NMR (C_{6}D_{6}): δ 65.1; 29Si{1H} NMR (C_{6}D_{6}): δ 57.4 (1H-29Si HMBC), 2J_{SiH} = 9.8 Hz (J-HMBC). A crystal of 2b suitable for X-ray diffraction analysis was grown from a concentrated pentane solution at -35 °C.

Crystallographic Solution and Refinement Details

Crystallographic Characterization of (κ^2-P,O-1-diisopropylphosphinopheno-2-indanone)Cp*RuCl·0.5C_{6}H_{6} and 1a_2(μ-N_2). Crystallographic data for these complexes were obtained at 173(±2) K on a Nonius KappaCCD 4-Circle Kappa FR540C diffractometer using a graphite-monochromated Mo Kα (λ = 0.71073 Å) radiation, employing samples that were mounted in inert oil and transferred to a cold gas stream on the diffractometer. Cell parameters were initially retrieved by using the COLLECT software (Nonius), and refined with the HKL DENZO and SCALEPACK software. Data reduction and absorption correction (multi-scan) were also performed with the HKL DENZO and SCALEPACK software. The structures were solved by using the direct methods package...
in SIR-97, \(^{57b}\) and refined by use of the SHELXL97-2 program, \(^{58}\) employing full-matrix least-squares procedures (on \(F^2\)) with \(R_1\) based on \(F_0^2 \geq 2\sigma(F_0^2)\) and \(wR_2\) based on \(F_0^2 \geq -3\sigma(F_0^2)\). Anisotropic displacement parameters were employed throughout for the non-H atoms. For \((\kappa^2-P,O-1\text{-diisopropylphosphino-2-indanone})Cp^*RuCl\cdot0.5C_6H_6\), the H-atom attached to C1 was located in the Fourier difference map and its coordinates and isotropic thermal parameter were allowed refine. Otherwise, all H-atoms were added at calculated positions and refined by using a riding model employing isotropic displacement parameters based on the isotropic displacement parameter of the attached atom. Additional crystallographic information is provided in the deposited CIFs: \((\kappa^2-P,O-1\text{-diisopropylphosphino-2-indanone})Cp^*RuCl\cdot0.5C_6H_6\) (CCDC 654073) and \(1a_2(\mu-N_2)\) (CCDC 654074). ORTEP diagrams featured in the manuscript were prepared by use of ORTEP-3 for Windows version 1.074.\(^{59}\)

Crystallographic Characterization of 2b. Crystallographic data for 2b were obtained at 193(\(\pm\)2) K on a Bruker PLATFORM/SMART 1000 CCD diffractometer using a graphite-monochromated Mo K\(\alpha\) (\(\lambda = 0.71073\) Å) radiation, employing a sample that was mounted in inert oil and transferred to a cold gas stream on the diffractometer. Programs for diffractometer operation, data collection, data reduction, and absorption correction (including SAINT and SADABS) were supplied by Bruker. The structure was solved by use of direct methods, and refined by use of full-matrix least-squares procedures (on \(F^2\)) with \(R_1\) based on \(F_0^2 \geq 2\sigma(F_0^2)\) and \(wR_2\) based on \(F_0^2 \geq -3\sigma(F_0^2)\). Anisotropic displacement parameters were employed throughout for the non-H atoms. The positions of the Ru-Hs (H1 and H2) were located in the Fourier difference map and refined, with the Ru-H distances fixed at 1.55 Å. All other H-atoms were added at calculated positions and refined by use of a riding model employing isotropic displacement parameters based on the isotropic displacement parameter of the attached atom. The final refined value of the absolute structure parameter (-0.024(19)) supported that the absolute structure had been chosen correctly. \(^{510}\) Additional crystallographic information is provided in the deposited CIF.
(CCDC 654072). The ORTEP diagram featured in the manuscript was prepared by use of ORTEP-3 for Windows version 1.074. S9

References

