Synthesis of \(p \)-sulfonatocalix[4]arene modified silver nanoparticles as colorimetric histidine probes

Dejun Xiong, Mingliang Chen and Haibing Li*

Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
E-mail: lhbing@mail.ccnu.edu.cn

Experimental details

Synthesis of \(p \)-sulfonatocalix[4]arene: The procedure according to Shinkai’s method\(^1-3\) was slightly modified as follows. Calix[4]arene (1g) was mixed with 10 mL of concentrated \(\text{H}_2\text{SO}_4 \). Then the solution was heated at 70 °C for 3h. An aliquot was withdrawn from the solution and poured into water to determine the progress of the reaction. The reaction was completed when water-insoluble material was not detected. After cooling, the precipitate was recovered by filtration. The precipitate was dissolved in 4 mL water before addition of 20 mL brine. Finally, 1.3 g \(p \)-sulfonatocalix[4]arene was obtained after evaporation of water in yield of 66.3%;

Single spot on paper chromatography (water-2-propanol 1:1 v/v); IR (KBr) \(\nu_{\text{OH}} \) 3431,3188 cm\(^{-1}\), \(\nu_{\text{SO}_3} \) 1187, 1049 cm\(^{-1}\); \(^1\)H NMR (\(\text{D}_2\text{O} \)) \(\delta \) (ppm): 3. 45, 4. 25 (d, 8H, \(\text{ArCH}_2\text{Ar} \)), 7. 93 (Ar H, s ,8H) .

2 mL of \(10^{-2} \) M \(\text{AgNO}_3 \) solution was added to 96 mL of triply distilled water. To this solution, 2 mL of \(10^{-2} \) M \(p \)-sulfonatocalix[4]arene aqueous solution was added as stabilizer with stirring for 20 min. And then, 8.8 mg of \(\text{NaBH}_4 \) was added to the
solution. The mixture was continually stirred for 5 min at room temperature. The silver colloids were finally obtained.

Synthesis of mercaptoacetic acid modified silver nanoparticles

To the solution of 2 mL of 10^{-2} M AgNO$_3$ solution and 96 mL of triply distilled water, 8.8 mg of NaBH$_4$ was added. And then, 2 mL of 10^{-2} M mercaptoacetic acid aqueous solution was added as stabilizer with stirring for 7 hours at room temperature.

The stability of pSC$_4$-Ag NPs and MA-Ag NPs

Fig. S1 shows the adsorption spectra of pSC$_4$-Ag NPs and MA-Ag NPs recorded on different times. For pSC$_4$-Ag NPs, there was no obvious change in the shape, position and symmetry of the absorption peak during the initial one month, except for a little decrease of the absorbance intensity. However, for MA-Ag NPs, it is shown that the obvious change in the shape, position and symmetry of the absorption peak and the dramatical decrease of the absorbance intensity. The results indicate pSC$_4$-Ag NPs are more stable than MA-Ag NPs.
Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2007

Fig. S1: The absorption spectra of \(\rho \text{SCBridge}-\text{AgNPs} \) recorded at: (a) 0, (b) 48 h, (c) 120 h, (d) 720 h (one month) and \(\text{MA-AgNPs} \) recorded at: (e) 0 (f) 24 h (g) 240 h

References