# Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2008 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? loop_ _publ_author_name _publ_author_address _publ_author_footnote M.J.Ingleson ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; . J.P.Barrio ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; . J.Bacsa ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; . C.Dickinson ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; . 'Hyunsoo Park.' ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; . ; M.J.Rosseinsky ; ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; . _publ_contact_author_address ; Department of Chemistry University of Liverpool Crown Street Liverpool, L69 7ZD United Kingdom ; _publ_contact_author_email m.j.rosseinsky@liv.ac.uk _publ_contact_author_fax '(+44) 151 794 3598' _publ_contact_author_phone '(+44) 151 794 3504' # SUBMISSION DETAILS _publ_contact_author_name 'Prof. Matthew J. Rosseinsky' _publ_contact_letter ; Please consider this CIF for publication. I certify that this contibution is the original work of those listed as authors; that it has not been published before (in any language or medium) and is not being considered for publication elsewhere; that all authors concur with and are aware of the submission; that all workers involved in the study are listed as authors or given proper credit in the acknowledgements; that I have obtained permission for and acknowledged the source of any excerpts from other copyright works; and that to the best of my knowledge the paper contains no statements which are libellous, unlawful or in any way actionable. All coauthors have made significant scientific contributions to the work reported, including the ideas and their execution, and share responsibility and accountability for the results. ; _publ_section_title ; Generation of a Solid Bronsted Acid Site in a Chiral Framework ; # Attachment 'Cuaspbpe-complex4.CIF' data_c832msvr _database_code_depnum_ccdc_archive 'CCDC 662349' _audit_update_record ; 2007-09-27 # Formatted by J.Bacsa 2008-01-06 # Formatted by publCIF ; _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common c832 _chemical_melting_point ? _chemical_formula_moiety ? _chemical_formula_sum 'C22 H32 Cu2 N4 O12' _chemical_formula_weight 671.60 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Monoclinic _symmetry_space_group_name_Hall 'P 2yb' _symmetry_space_group_name_H-M 'P 21' _symmetry_Int_Tables_number 4 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z' _cell_length_a 6.6444(9) _cell_length_b 24.942(3) _cell_length_c 7.9004(11) _cell_angle_alpha 90.00 _cell_angle_beta 91.713(2) _cell_angle_gamma 90.00 _cell_volume 1308.7(3) _cell_formula_units_Z 2 _cell_measurement_temperature 110(2) _cell_measurement_reflns_used 2614 _cell_measurement_theta_min 0.956 _cell_measurement_theta_max 27.48 _exptl_crystal_description 'pinacoidal with 6 faces' _exptl_crystal_colour blue _exptl_crystal_size_max 0.20 _exptl_crystal_size_mid 0.15 _exptl_crystal_size_min 0.05 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.704 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 692 _exptl_absorpt_coefficient_mu 1.697 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.7278 _exptl_absorpt_correction_T_max 0.9140 _exptl_absorpt_process_details ; A combination of a face-indexed absorption and a multi-scan correction (in SADABS) was applied. The crystal faces were indexed, and distances measured using the SMART software. ; _exptl_special_details ; ? ; _diffrn_ambient_temperature 110(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type ? _diffrn_measurement_method ? _diffrn_detector_area_resol_mean ? _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 6223 _diffrn_reflns_av_R_equivalents 0.0208 _diffrn_reflns_av_sigmaI/netI 0.0658 _diffrn_reflns_limit_h_min -8 _diffrn_reflns_limit_h_max 4 _diffrn_reflns_limit_k_min -29 _diffrn_reflns_limit_k_max 31 _diffrn_reflns_limit_l_min -10 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 1.63 _diffrn_reflns_theta_max 27.49 _reflns_number_total 5161 _reflns_number_gt 4806 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART v.5.632 (Bruker, 2005)' _computing_cell_refinement 'SAINT v6.45a (Bruker, 2005)' _computing_data_reduction 'SAINT v6.45a (Bruker, 2005)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; The unit cell is pseudo-orthorhombic, but with a much lower R-int value for the monoclinic cell, and systematic absences that were not consistent with orthorhombic metric symmetry. Therefore monoclinic symmetry was selected, and the final cell constants obtained from least-squares refinement of 2614 reflections. Monoclinic structures that emulate orthorhombic symmetry, are typically twinned, the second domain is related to the first by a 180\% rotation, and this extra rotation results in approximate 4-fold symmetry. These crystals appeared to be twinned under polarised light, but the crystal chosen for the analysis did not show obvious macroscopic features of twinning. Test for twinning were carried out, and the case where the second domain is rotated 180\% from the first about the c-axis, gave the best results (reduced the R-value the most). This structure refined with an absolute structure parameter that deviated substantially from 0 (0.12(2)). Therefore this structure was refined as a combination of a racemic and rotation twin. In previous work on similar compounds the crystals were shown to be twinned racemically. The multi-scan absorption correction performed by SADABS is based on comparisons of Friedel opposites and these may be non-equivalent due to overlapping reflections from unresolved twinning. Therefore a face-indexed absorption correction (in SADABS) was applied. The crystal faces were indexed, and distances measured using the SMART software. The hydrogen atoms attached to N atoms were located from difference electron density maps and were refined with the N-H and H-H distances restrained. (Total of 6 restraints). All other hydrogens were refined in a riding mode with values of Ueq that were 1.2 times the Ueq for the heavy atoms to which they were bonded. It is apparent from the X-ray diffraction results that the porous channels in the crystal contain methanol and water molecules, but also that these channels are half empty. They are weakly held and show up as diffuse electron density corresponding to disordered solvent molecules (methanol molecules and water molecules whose populations refined to approximately 50% full-occupancy). The values refined to 2 water molecules and 2 methanol molecules for each formula unit. TG and CHN analysis confirmed this formulation. The SQUEEZE routine in PLATON (Spek, 2003) was used to remove the contributions of the disordered solvent from diffraction intensities in order to improve the refinement of ordered parts within the structure. (SQUEEZE details are appended to the CIF). Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0428P)^2^+1.8299P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.00 _chemical_absolute_configuration rmad _refine_ls_number_reflns 5161 _refine_ls_number_parameters 325 _refine_ls_number_restraints 6 _refine_ls_R_factor_all 0.0553 _refine_ls_R_factor_gt 0.0511 _refine_ls_wR_factor_ref 0.1141 _refine_ls_wR_factor_gt 0.1118 _refine_ls_goodness_of_fit_ref 1.085 _refine_ls_restrained_S_all 1.083 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.37176(10) 0.31133(2) 0.75362(8) 0.01423(17) Uani 1 1 d . . . O1 O 0.5890(7) 0.34228(17) 0.5503(5) 0.0193(10) Uani 1 1 d . . . N1 N 0.1963(7) 0.3763(2) 0.7160(5) 0.0103(10) Uani 1 1 d . . . C1 C 0.2582(9) 0.4197(2) 0.6337(7) 0.0134(12) Uani 1 1 d . . . H1 H 0.3886 0.4196 0.5876 0.016 Uiso 1 1 calc R . . Cu2 Cu 0.87093(10) 0.23275(2) 0.28449(8) 0.01313(16) Uani 1 1 d . . . O2 O 0.7090(6) 0.26299(17) 0.4665(5) 0.0155(9) Uani 1 1 d . . . N2 N -0.7042(8) 0.6660(2) 0.7343(6) 0.0143(11) Uani 1 1 d . . . C2 C 0.1385(11) 0.4650(3) 0.6133(7) 0.0207(13) Uani 1 1 d . . . H2 H 0.1857 0.4950 0.5518 0.025 Uiso 1 1 calc R . . O3 O 0.5122(6) 0.34934(17) -0.0548(5) 0.0149(8) Uani 1 1 d . . . N3 N 0.9960(7) 0.3056(2) 0.2835(6) 0.0118(10) Uani 1 1 d DU . . C3 C -0.0492(10) 0.4662(2) 0.6827(7) 0.0165(13) Uani 1 1 d . . . O4 O 0.6244(7) 0.27870(18) 0.0972(6) 0.0211(10) Uani 1 1 d . . . N4 N 0.5038(8) 0.2402(2) 0.7761(6) 0.0186(12) Uani 1 1 d DU . . C4 C -0.1153(10) 0.4191(3) 0.7646(8) 0.0184(14) Uani 1 1 d . . . H4 H -0.2454 0.4178 0.8111 0.022 Uiso 1 1 calc R . . O5 O 0.2056(6) 0.27210(18) 0.5824(5) 0.0146(9) Uani 1 1 d . . . C5 C 0.0083(10) 0.3758(3) 0.7763(8) 0.0198(14) Uani 1 1 d . . . H5 H -0.0391 0.3442 0.8287 0.024 Uiso 1 1 calc R . . O6 O 0.0756(7) 0.19193(17) 0.5368(5) 0.0190(9) Uani 1 1 d . . . C6 C -0.1710(9) 0.5156(2) 0.6732(7) 0.0150(12) Uani 1 1 d . . . H6 H -0.1240 0.5438 0.6039 0.018 Uiso 1 1 calc R . . O7 O 0.1327(6) 0.26898(17) 0.9555(5) 0.0155(9) Uani 1 1 d . . . C7 C -0.3402(10) 0.5240(2) 0.7531(7) 0.0192(13) Uani 1 1 d . . . H7 H -0.3889 0.4953 0.8193 0.023 Uiso 1 1 calc R . . O8 O 0.0585(6) 0.20123(17) 1.1287(5) 0.0172(9) Uani 1 1 d . . . C8 C -0.4599(9) 0.5735(3) 0.7492(8) 0.0180(13) Uani 1 1 d . . . C9 C -0.6566(10) 0.5745(2) 0.8103(8) 0.0205(13) Uani 1 1 d . . . H9 H -0.7095 0.5433 0.8616 0.025 Uiso 1 1 calc R . . C10 C -0.7725(9) 0.6194(3) 0.7972(8) 0.0207(14) Uani 1 1 d . . . H10 H -0.9072 0.6178 0.8340 0.025 Uiso 1 1 calc R . . C11 C -0.5167(9) 0.6665(2) 0.6791(7) 0.0122(12) Uani 1 1 d . . . H11 H -0.4665 0.6989 0.6339 0.015 Uiso 1 1 calc R . . C12 C -0.3877(8) 0.6211(3) 0.6839(7) 0.0128(12) Uani 1 1 d . . . H12 H -0.2549 0.6234 0.6432 0.015 Uiso 1 1 calc R . . C13 C 0.6996(8) 0.3142(3) 0.4630(7) 0.0157(12) Uani 1 1 d . . . C14 C 0.8382(8) 0.3437(2) 0.3356(7) 0.0103(11) Uani 1 1 d . . . H14 H 0.9059 0.3741 0.3971 0.012 Uiso 1 1 calc R . . C15 C 0.7143(9) 0.3667(2) 0.1894(7) 0.0154(12) Uani 1 1 d . . . H15A H 0.8033 0.3896 0.1217 0.018 Uiso 1 1 calc R . . H15B H 0.6096 0.3902 0.2363 0.018 Uiso 1 1 calc R . . C16 C 0.6107(9) 0.3262(3) 0.0699(8) 0.0162(13) Uani 1 1 d . . . C17 C 0.1936(9) 0.2216(2) 0.6096(7) 0.0129(12) Uani 1 1 d . . . C18 C 0.3485(9) 0.1993(3) 0.7351(8) 0.0193(14) Uani 1 1 d . . . H18 H 0.4158 0.1680 0.6815 0.023 Uiso 1 1 calc R . . C19 C 0.2513(9) 0.1798(2) 0.8991(7) 0.0158(12) Uani 1 1 d . . . H19A H 0.1562 0.1505 0.8691 0.019 Uiso 1 1 calc R . . H19B H 0.3584 0.1643 0.9739 0.019 Uiso 1 1 calc R . . C20 C 0.1400(8) 0.2213(2) 0.9983(6) 0.0094(11) Uani 1 1 d . . . H3A H 1.099(5) 0.297(2) 0.370(4) 0.002(14) Uiso 1 1 d D . . H4A H 0.602(6) 0.229(3) 0.692(5) 0.028(18) Uiso 1 1 d D . . H3B H 1.059(6) 0.303(2) 0.174(2) 0.001(13) Uiso 1 1 d D . . H4B H 0.575(7) 0.239(3) 0.887(3) 0.021(17) Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0162(3) 0.0134(4) 0.0131(3) 0.0013(3) 0.0008(3) 0.0032(3) O1 0.025(2) 0.012(2) 0.022(2) 0.0009(18) 0.0086(18) 0.0015(19) N1 0.016(2) 0.011(3) 0.003(2) -0.0002(17) -0.0055(17) 0.005(2) C1 0.012(3) 0.009(3) 0.019(3) 0.000(2) 0.001(2) 0.002(2) Cu2 0.0176(3) 0.0088(4) 0.0134(3) -0.0012(3) 0.0073(2) -0.0006(3) O2 0.0122(19) 0.014(2) 0.020(2) 0.0026(17) 0.0046(16) 0.0018(17) N2 0.023(3) 0.014(3) 0.006(2) 0.0025(19) 0.0006(19) -0.001(2) C2 0.033(4) 0.011(3) 0.018(3) 0.001(2) -0.001(3) -0.001(3) O3 0.016(2) 0.013(2) 0.015(2) 0.0034(16) -0.0028(16) 0.0019(17) N3 0.007(2) 0.014(3) 0.014(2) -0.006(2) -0.0006(16) -0.008(2) C3 0.030(3) 0.003(3) 0.016(3) 0.001(2) 0.001(2) 0.000(2) O4 0.022(2) 0.009(2) 0.032(2) 0.0012(18) -0.008(2) 0.0020(19) N4 0.020(3) 0.013(3) 0.022(2) -0.001(2) 0.006(2) -0.007(2) C4 0.024(3) 0.009(3) 0.023(3) -0.005(2) 0.004(3) -0.001(3) O5 0.013(2) 0.013(2) 0.017(2) 0.0007(16) -0.0050(16) -0.0024(17) C5 0.018(3) 0.021(4) 0.021(3) 0.006(3) 0.004(2) -0.004(3) O6 0.023(2) 0.012(2) 0.021(2) -0.0048(18) -0.0049(18) -0.0016(18) C6 0.016(3) 0.006(3) 0.022(3) 0.006(2) -0.004(2) 0.001(2) O7 0.022(2) 0.010(2) 0.0142(19) 0.0057(16) 0.0057(17) 0.0032(18) C7 0.032(3) 0.007(3) 0.019(3) 0.001(2) 0.006(3) 0.002(3) O8 0.020(2) 0.012(2) 0.020(2) -0.0002(17) 0.0119(17) 0.0019(17) C8 0.012(3) 0.019(3) 0.024(3) 0.000(2) 0.002(2) 0.005(2) C9 0.024(3) 0.008(3) 0.030(3) 0.007(2) 0.011(3) 0.005(2) C10 0.011(3) 0.023(4) 0.028(3) 0.001(3) 0.007(2) -0.001(3) C11 0.022(3) 0.008(3) 0.007(2) 0.004(2) -0.004(2) 0.003(2) C12 0.007(3) 0.022(3) 0.010(3) -0.001(2) -0.003(2) 0.001(2) C13 0.005(2) 0.026(3) 0.016(2) -0.001(3) 0.0049(19) 0.005(3) C14 0.012(3) 0.005(3) 0.013(3) 0.000(2) 0.000(2) -0.002(2) C15 0.018(3) 0.013(3) 0.015(3) 0.006(2) 0.002(2) 0.004(2) C16 0.011(3) 0.018(3) 0.019(3) 0.002(2) -0.001(2) -0.006(2) C17 0.017(3) 0.011(3) 0.011(2) -0.002(2) 0.004(2) 0.009(2) C18 0.023(3) 0.013(3) 0.023(3) -0.001(2) 0.008(3) 0.000(3) C19 0.019(3) 0.011(3) 0.018(3) 0.003(2) 0.008(2) 0.003(2) C20 0.012(3) 0.003(3) 0.013(2) -0.0031(19) 0.000(2) -0.002(2) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 O5 1.979(4) . ? Cu1 N4 1.984(6) . ? Cu1 O3 1.994(4) 1_556 ? Cu1 N1 2.013(5) . ? Cu1 O1 2.323(4) . ? O1 C13 1.240(7) . ? N1 C1 1.335(8) . ? N1 C5 1.350(8) . ? C1 C2 1.388(8) . ? C1 H1 0.9500 . ? Cu2 O8 1.944(4) 1_654 ? Cu2 O2 1.971(4) . ? Cu2 N3 1.997(5) . ? Cu2 N2 2.002(5) 2_546 ? O2 C13 1.279(8) . ? N2 C11 1.332(8) . ? N2 C10 1.350(8) . ? N2 Cu2 2.002(5) 2_556 ? C2 C3 1.378(9) . ? C2 H2 0.9500 . ? O3 C16 1.301(7) . ? O3 Cu1 1.994(4) 1_554 ? N3 C14 1.483(8) . ? N3 H3A 0.973(10) . ? N3 H3B 0.976(10) . ? C3 C4 1.417(9) . ? C3 C6 1.475(8) . ? O4 C16 1.208(8) . ? N4 C18 1.480(8) . ? N4 H4A 0.984(10) . ? N4 H4B 0.982(10) . ? C4 C5 1.358(9) . ? C4 H4 0.9500 . ? O5 C17 1.281(7) . ? C5 H5 0.9500 . ? O6 C17 1.211(7) . ? C6 C7 1.322(8) . ? C6 H6 0.9500 . ? O7 C20 1.237(7) . ? C7 C8 1.468(9) . ? C7 H7 0.9500 . ? O8 C20 1.280(7) . ? O8 Cu2 1.944(4) 1_456 ? C8 C12 1.387(9) . ? C8 C9 1.407(8) . ? C9 C10 1.360(9) . ? C9 H9 0.9500 . ? C10 H10 0.9500 . ? C11 C12 1.418(8) . ? C11 H11 0.9500 . ? C12 H12 0.9500 . ? C13 C14 1.568(8) . ? C14 C15 1.512(8) . ? C14 H14 1.0000 . ? C15 C16 1.532(8) . ? C15 H15A 0.9900 . ? C15 H15B 0.9900 . ? C17 C18 1.513(8) . ? C18 C19 1.543(8) . ? C18 H18 1.0000 . ? C19 C20 1.506(8) . ? C19 H19A 0.9900 . ? C19 H19B 0.9900 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O5 Cu1 N4 81.7(2) . . ? O5 Cu1 O3 173.07(18) . 1_556 ? N4 Cu1 O3 99.30(19) . 1_556 ? O5 Cu1 N1 89.32(18) . . ? N4 Cu1 N1 170.1(2) . . ? O3 Cu1 N1 89.15(17) 1_556 . ? O5 Cu1 O1 92.14(16) . . ? N4 Cu1 O1 94.41(18) . . ? O3 Cu1 O1 94.62(17) 1_556 . ? N1 Cu1 O1 89.98(18) . . ? C13 O1 Cu1 126.0(4) . . ? C1 N1 C5 118.7(5) . . ? C1 N1 Cu1 122.7(4) . . ? C5 N1 Cu1 118.7(4) . . ? N1 C1 C2 122.2(6) . . ? N1 C1 H1 118.9 . . ? C2 C1 H1 118.9 . . ? O8 Cu2 O2 172.25(18) 1_654 . ? O8 Cu2 N3 95.21(19) 1_654 . ? O2 Cu2 N3 83.75(19) . . ? O8 Cu2 N2 88.90(19) 1_654 2_546 ? O2 Cu2 N2 93.39(19) . 2_546 ? N3 Cu2 N2 170.0(2) . 2_546 ? C13 O2 Cu2 113.2(3) . . ? C11 N2 C10 117.1(5) . . ? C11 N2 Cu2 119.4(4) . 2_556 ? C10 N2 Cu2 123.6(4) . 2_556 ? C3 C2 C1 119.6(6) . . ? C3 C2 H2 120.2 . . ? C1 C2 H2 120.2 . . ? C16 O3 Cu1 125.3(4) . 1_554 ? C14 N3 Cu2 106.5(3) . . ? C14 N3 H3A 115(3) . . ? Cu2 N3 H3A 95(3) . . ? C14 N3 H3B 128(3) . . ? Cu2 N3 H3B 97(3) . . ? H3A N3 H3B 107.3(12) . . ? C2 C3 C4 117.4(6) . . ? C2 C3 C6 120.0(5) . . ? C4 C3 C6 122.6(6) . . ? C18 N4 Cu1 107.1(4) . . ? C18 N4 H4A 98(4) . . ? Cu1 N4 H4A 119(4) . . ? C18 N4 H4B 119(4) . . ? Cu1 N4 H4B 108(4) . . ? H4A N4 H4B 105.8(12) . . ? C5 C4 C3 119.7(6) . . ? C5 C4 H4 120.2 . . ? C3 C4 H4 120.2 . . ? C17 O5 Cu1 114.1(4) . . ? N1 C5 C4 122.3(6) . . ? N1 C5 H5 118.9 . . ? C4 C5 H5 118.9 . . ? C7 C6 C3 125.5(5) . . ? C7 C6 H6 117.2 . . ? C3 C6 H6 117.2 . . ? C6 C7 C8 126.2(5) . . ? C6 C7 H7 116.9 . . ? C8 C7 H7 116.9 . . ? C20 O8 Cu2 130.3(4) . 1_456 ? C12 C8 C9 116.6(6) . . ? C12 C8 C7 122.3(5) . . ? C9 C8 C7 121.1(6) . . ? C10 C9 C8 121.2(6) . . ? C10 C9 H9 119.4 . . ? C8 C9 H9 119.4 . . ? N2 C10 C9 122.8(6) . . ? N2 C10 H10 118.6 . . ? C9 C10 H10 118.6 . . ? N2 C11 C12 123.7(6) . . ? N2 C11 H11 118.1 . . ? C12 C11 H11 118.1 . . ? C8 C12 C11 118.5(5) . . ? C8 C12 H12 120.7 . . ? C11 C12 H12 120.7 . . ? O1 C13 O2 125.6(6) . . ? O1 C13 C14 117.5(6) . . ? O2 C13 C14 116.9(5) . . ? N3 C14 C15 113.9(5) . . ? N3 C14 C13 108.1(5) . . ? C15 C14 C13 110.6(5) . . ? N3 C14 H14 108.0 . . ? C15 C14 H14 108.0 . . ? C13 C14 H14 108.0 . . ? C14 C15 C16 116.4(5) . . ? C14 C15 H15A 108.2 . . ? C16 C15 H15A 108.2 . . ? C14 C15 H15B 108.2 . . ? C16 C15 H15B 108.2 . . ? H15A C15 H15B 107.3 . . ? O4 C16 O3 127.1(6) . . ? O4 C16 C15 120.5(5) . . ? O3 C16 C15 112.4(5) . . ? O6 C17 O5 124.3(5) . . ? O6 C17 C18 120.4(5) . . ? O5 C17 C18 115.2(5) . . ? N4 C18 C17 110.3(5) . . ? N4 C18 C19 109.9(5) . . ? C17 C18 C19 111.9(5) . . ? N4 C18 H18 108.2 . . ? C17 C18 H18 108.2 . . ? C19 C18 H18 108.2 . . ? C20 C19 C18 116.4(5) . . ? C20 C19 H19A 108.2 . . ? C18 C19 H19A 108.2 . . ? C20 C19 H19B 108.2 . . ? C18 C19 H19B 108.2 . . ? H19A C19 H19B 107.3 . . ? O7 C20 O8 125.6(5) . . ? O7 C20 C19 122.3(5) . . ? O8 C20 C19 112.1(5) . . ? _diffrn_measured_fraction_theta_max 0.953 _diffrn_reflns_theta_full 27.49 _diffrn_measured_fraction_theta_full 0.953 _refine_diff_density_max 0.888 _refine_diff_density_min -0.920 _refine_diff_density_rms 0.111 # SQUEEZE RESULTS (APPEND TO CIF) loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons 1 0.034 0.525 0.217 162.8 45.9 2 -0.078 0.025 0.783 162.7 46.0 _platon_squeeze_details ; Two solvent accessible regions are present in the unit cell. TG and CHN analysis indicate 2 water molecule and 2 methanol molecule for each formula unit. The SQUEEZE routine in PLATON (Spek, 2003) was used to remove the contributions of the disordered solvent from diffraction intensities in order to improve the refinement of ordered parts within the structure. A total of 46 electrons for each void volume of 163 \%A^3^ was equated to approximately 1 methanol molecule and 1 water molecule, or 50 per electrons per asymmetric unit. An independent refinement on the data not treated by SQUEEZE showed electron density that corresponded to water and methanol, but not ethenebipyridine. ; data_Cuaspfi _database_code_depnum_ccdc_archive 'CCDC 662350' _audit_update_record ; 2007-09-27 # Formatted by J.Bacsa ; _audit_creation_method SHELXL-97 _chemical_name_systematic ; ; _chemical_name_common CuASPbipy _chemical_melting_point ? _chemical_formula_moiety ; (Cu 2+)2, (C12 H10 N2), (C4 H5 N O4 2-)2 ; _chemical_formula_sum 'C18 H18 Cu2 N4 O8' _chemical_formula_weight 545.45 _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M P21212 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cu Cu 0.3201 1.2651 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _cell_length_a 21.424(6) _cell_length_b 6.897(2) _cell_length_c 7.800(2) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 1152.5(6) _cell_formula_units_Z 2 _cell_measurement_temperature 110(2) _cell_measurement_reflns_used 1232 _cell_measurement_theta_min 2.6 _cell_measurement_theta_max 26.7 _exptl_crystal_description pincoid _exptl_crystal_colour blue _exptl_crystal_size_max 0.15 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.04 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.572 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 552 _exptl_absorpt_coefficient_mu 1.894 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.7642 _exptl_absorpt_correction_T_max 0.9281 _exptl_absorpt_process_details ? _exptl_special_details ; ; _diffrn_ambient_temperature 110(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker D8 diffractometer with APEX detector' _diffrn_measurement_method '\w scans with a narrow frame width' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 1229 _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0.00 _diffrn_reflns_number 5499 _diffrn_reflns_av_R_equivalents 0.0710 _diffrn_reflns_av_sigmaI/netI 0.1023 _diffrn_reflns_limit_h_min -25 _diffrn_reflns_limit_h_max 25 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 2.61 _diffrn_reflns_theta_max 25.34 _reflns_number_total 2108 _reflns_number_gt 1706 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'SMART v.5.632 (Bruker, 2005)' _computing_cell_refinement 'SAINT v6.45a (Bruker, 2005)' _computing_data_reduction 'SAINT v6.45a (Bruker, 2005)' _computing_structure_solution 'SHELXS-97 (Sheldrick, 1990)' _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' _computing_molecular_graphics ? _computing_publication_material ? _refine_special_details ; A face-indexing absorption correction was applied with SADABS. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0723P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.09(5) _chemical_absolute_configuration rmad _refine_ls_number_reflns 2108 _refine_ls_number_parameters 175 _refine_ls_number_restraints 94 _refine_ls_R_factor_all 0.0832 _refine_ls_R_factor_gt 0.0676 _refine_ls_wR_factor_ref 0.1556 _refine_ls_wR_factor_gt 0.1488 _refine_ls_goodness_of_fit_ref 1.060 _refine_ls_restrained_S_all 1.038 _refine_ls_shift/su_max 0.005 _refine_ls_shift/su_mean 0.002 loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x+1/2, -y+1/2, -z' '-x+1/2, y+1/2, -z' loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cu1 Cu 0.29462(4) 0.51609(12) 0.23184(12) 0.0221(3) Uani 1 1 d . . . O1 O 0.2545(3) 0.6770(9) 0.0529(7) 0.0273(15) Uani 1 1 d . A . N1 N 0.2098(3) 0.4010(8) 0.2447(8) 0.0226(13) Uani 1 1 d . A . H2N H 0.2065 0.2991 0.1691 0.027 Uiso 1 1 calc R . . H1N H 0.2023 0.3553 0.3535 0.027 Uiso 1 1 calc R . . O2 O 0.1617(3) 0.8134(10) -0.0048(7) 0.0287(15) Uani 1 1 d . A . O5 O 0.1644(3) 0.8532(9) 0.5962(7) 0.0248(14) Uani 1 1 d . . . O6 O 0.2450(3) 0.7551(9) 0.4324(7) 0.0247(15) Uani 1 1 d . A . C6 C 0.1958(4) 0.6905(12) 0.0728(10) 0.0190(18) Uani 1 1 d . . . C7 C 0.1648(3) 0.5522(12) 0.2009(9) 0.0209(19) Uani 1 1 d D A . H7 H 0.1299(19) 0.478(8) 0.150(6) 0.000(15) Uiso 1 1 d D . . C8 C 0.1392(4) 0.6602(14) 0.3561(10) 0.029(2) Uani 1 1 d U . . H8A H 0.1170 0.5658 0.4297 0.034 Uiso 1 1 calc R A . H8B H 0.1080 0.7556 0.3154 0.034 Uiso 1 1 calc R . . C9 C 0.1880(4) 0.7694(12) 0.4690(11) 0.0200(19) Uani 1 1 d U A . N1A N 0.3721(6) 0.677(3) 0.1810(19) 0.022(3) Uani 0.50 1 d PD A 1 C1A C 0.4283(6) 0.618(2) 0.124(2) 0.019(3) Uani 0.50 1 d PDU A 1 H1A H 0.4334 0.4848 0.0947 0.023 Uiso 0.50 1 calc PR A 1 C2A C 0.4777(7) 0.7376(19) 0.107(2) 0.025(3) Uani 0.50 1 d PDU A 1 H2A H 0.5158 0.6890 0.0617 0.030 Uiso 0.50 1 calc PR A 1 C3A C 0.4733(6) 0.9361(19) 0.155(2) 0.020(2) Uani 0.50 1 d PDU . 1 C4A C 0.4147(8) 0.999(3) 0.208(5) 0.017(3) Uani 0.50 1 d PDU A 1 H4A H 0.4080 1.1314 0.2356 0.020 Uiso 0.50 1 calc PR A 1 C5A C 0.3663(9) 0.866(3) 0.220(10) 0.0144(18) Uani 0.50 1 d PDU A 1 H5A H 0.3267 0.9113 0.2578 0.017 Uiso 0.50 1 calc PR A 1 N1B N 0.3709(6) 0.687(3) 0.261(2) 0.022(3) Uani 0.50 1 d PD A 2 C1B C 0.4260(6) 0.625(2) 0.320(2) 0.018(2) Uani 0.50 1 d PDU A 2 H1B H 0.4291 0.4942 0.3568 0.022 Uiso 0.50 1 calc PR A 2 C2B C 0.4784(6) 0.7385(19) 0.3292(19) 0.018(2) Uani 0.50 1 d PDU A 2 H2B H 0.5171 0.6875 0.3676 0.022 Uiso 0.50 1 calc PR A 2 C3B C 0.4722(6) 0.9359(17) 0.280(2) 0.020(2) Uani 0.50 1 d PDU . 2 C4B C 0.4135(8) 1.007(3) 0.241(5) 0.017(3) Uani 0.50 1 d PDU A 2 H4B H 0.4069 1.1420 0.2256 0.020 Uiso 0.50 1 calc PR A 2 C5B C 0.3644(9) 0.877(3) 0.225(10) 0.0144(18) Uani 0.50 1 d PDU A 2 H5B H 0.3249 0.9230 0.1874 0.017 Uiso 0.50 1 calc PR A 2 _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cu1 0.0140(4) 0.0162(4) 0.0361(5) 0.0032(5) -0.0043(4) -0.0039(4) O1 0.020(3) 0.028(4) 0.034(3) 0.005(3) 0.003(3) 0.003(3) N1 0.019(3) 0.033(3) 0.017(3) 0.000(3) 0.004(3) -0.006(3) O2 0.017(3) 0.047(4) 0.022(3) 0.006(3) -0.005(2) 0.013(3) O5 0.014(3) 0.044(4) 0.016(3) -0.001(3) 0.000(2) -0.007(3) O6 0.015(3) 0.030(4) 0.029(3) -0.009(3) 0.005(2) -0.010(3) C6 0.011(5) 0.020(4) 0.026(4) -0.008(3) 0.000(3) -0.002(3) C7 0.006(3) 0.040(5) 0.017(4) -0.002(3) -0.002(3) -0.008(3) C8 0.015(4) 0.046(6) 0.025(5) -0.005(4) -0.001(3) -0.012(4) C9 0.014(4) 0.017(4) 0.029(4) 0.001(3) -0.004(3) -0.015(3) N1A 0.012(4) 0.027(4) 0.027(10) -0.010(9) -0.009(7) -0.005(3) C1A 0.012(6) 0.017(6) 0.029(7) 0.002(6) -0.001(5) -0.004(5) C2A 0.026(8) 0.013(6) 0.036(8) 0.002(6) -0.004(6) -0.004(5) C3A 0.009(4) 0.014(4) 0.037(6) -0.007(5) -0.010(5) 0.000(3) C4A 0.014(3) 0.013(3) 0.023(10) 0.002(5) -0.005(3) 0.001(3) C5A 0.008(3) 0.017(4) 0.018(5) -0.002(4) 0.003(3) 0.003(3) N1B 0.012(4) 0.027(4) 0.027(10) -0.010(9) -0.009(7) -0.005(3) C1B 0.008(5) 0.014(4) 0.033(5) 0.001(4) -0.006(4) 0.005(4) C2B 0.008(5) 0.014(4) 0.033(5) 0.001(4) -0.006(4) 0.005(4) C3B 0.009(4) 0.014(4) 0.037(6) -0.007(5) -0.010(5) 0.000(3) C4B 0.014(3) 0.013(3) 0.023(10) 0.002(5) -0.005(3) 0.001(3) C5B 0.008(3) 0.017(4) 0.018(5) -0.002(4) 0.003(3) 0.003(3) loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cu1 O5 1.957(6) 4_546 ? Cu1 O1 1.980(6) . ? Cu1 N1 1.985(6) . ? Cu1 N1B 2.028(15) . ? Cu1 N1A 2.035(16) . ? Cu1 O6 2.509(6) . ? O1 C6 1.269(10) . ? N1 C7 1.461(10) . ? N1 H2N 0.9200 . ? N1 H1N 0.9200 . ? O2 C6 1.272(10) . ? O5 C9 1.255(10) . ? O5 Cu1 1.957(6) 4_556 ? O6 C9 1.257(10) . ? C6 C7 1.533(11) . ? C7 C8 1.523(11) . ? C7 H7 0.989(10) . ? C8 C9 1.561(10) . ? C8 H8A 0.9900 . ? C8 H8B 0.9900 . ? N1A C5A 1.34(2) . ? N1A C1A 1.347(15) . ? C1A C2A 1.352(16) . ? C1A H1A 0.9500 . ? C2A C3A 1.423(16) . ? C2A H2A 0.9500 . ? C3A C4A 1.390(17) . ? C3A C3A 1.44(3) 2_675 ? C4A C5A 1.388(15) . ? C4A H4A 0.9500 . ? C5A H5A 0.9500 . ? N1B C1B 1.337(14) . ? N1B C5B 1.34(2) . ? C1B C2B 1.370(16) . ? C1B H1B 0.9500 . ? C2B C3B 1.421(15) . ? C2B H2B 0.9500 . ? C3B C4B 1.383(17) . ? C3B C3B 1.48(3) 2_675 ? C4B C5B 1.390(15) . ? C4B H4B 0.9500 . ? C5B H5B 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O5 Cu1 O1 178.4(2) 4_546 . ? O5 Cu1 N1 98.4(2) 4_546 . ? O1 Cu1 N1 82.1(3) . . ? O5 Cu1 N1B 84.1(5) 4_546 . ? O1 Cu1 N1B 95.9(5) . . ? N1 Cu1 N1B 164.7(5) . . ? O5 Cu1 N1A 94.6(5) 4_546 . ? O1 Cu1 N1A 84.9(5) . . ? N1 Cu1 N1A 166.9(5) . . ? N1B Cu1 N1A 17.7(5) . . ? O5 Cu1 O6 98.0(2) 4_546 . ? O1 Cu1 O6 83.5(2) . . ? N1 Cu1 O6 81.0(2) . . ? N1B Cu1 O6 83.7(5) . . ? N1A Cu1 O6 96.2(4) . . ? C6 O1 Cu1 112.6(5) . . ? C7 N1 Cu1 107.9(4) . . ? C7 N1 H2N 110.1 . . ? Cu1 N1 H2N 110.1 . . ? C7 N1 H1N 110.1 . . ? Cu1 N1 H1N 110.1 . . ? H2N N1 H1N 108.4 . . ? C9 O5 Cu1 128.7(5) . 4_556 ? C9 O6 Cu1 127.2(5) . . ? O1 C6 O2 124.0(8) . . ? O1 C6 C7 117.6(7) . . ? O2 C6 C7 118.3(7) . . ? N1 C7 C8 113.6(6) . . ? N1 C7 C6 108.0(6) . . ? C8 C7 C6 111.7(7) . . ? N1 C7 H7 103(4) . . ? C8 C7 H7 107(3) . . ? C6 C7 H7 113(3) . . ? C7 C8 C9 116.3(7) . . ? C7 C8 H8A 108.2 . . ? C9 C8 H8A 108.2 . . ? C7 C8 H8B 108.2 . . ? C9 C8 H8B 108.2 . . ? H8A C8 H8B 107.4 . . ? O5 C9 O6 127.4(7) . . ? O5 C9 C8 113.4(7) . . ? O6 C9 C8 119.0(8) . . ? C5A N1A C1A 116.9(16) . . ? C5A N1A Cu1 114.2(15) . . ? C1A N1A Cu1 128.8(12) . . ? N1A C1A C2A 123.2(14) . . ? N1A C1A H1A 118.4 . . ? C2A C1A H1A 118.4 . . ? C1A C2A C3A 120.7(13) . . ? C1A C2A H2A 119.7 . . ? C3A C2A H2A 119.7 . . ? C4A C3A C2A 116.0(13) . . ? C4A C3A C3A 121.6(16) . 2_675 ? C2A C3A C3A 122.3(16) . 2_675 ? C5A C4A C3A 119.3(17) . . ? C5A C4A H4A 120.3 . . ? C3A C4A H4A 120.3 . . ? N1A C5A C4A 124(2) . . ? N1A C5A H5A 118.1 . . ? C4A C5A H5A 118.1 . . ? C1B N1B C5B 118.3(16) . . ? C1B N1B Cu1 124.3(13) . . ? C5B N1B Cu1 117.3(14) . . ? N1B C1B C2B 124.0(13) . . ? N1B C1B H1B 118.0 . . ? C2B C1B H1B 118.0 . . ? C1B C2B C3B 117.2(12) . . ? C1B C2B H2B 121.4 . . ? C3B C2B H2B 121.4 . . ? C4B C3B C2B 118.9(12) . . ? C4B C3B C3B 121.2(15) . 2_675 ? C2B C3B C3B 119.8(14) . 2_675 ? C3B C4B C5B 118.6(16) . . ? C3B C4B H4B 120.7 . . ? C5B C4B H4B 120.7 . . ? N1B C5B C4B 122(2) . . ? N1B C5B H5B 118.9 . . ? C4B C5B H5B 118.9 . . ? _diffrn_measured_fraction_theta_max 0.992 _diffrn_reflns_theta_full 25.34 _diffrn_measured_fraction_theta_full 0.992 _refine_diff_density_max 0.956 _refine_diff_density_min -1.025 _refine_diff_density_rms 0.132