Cyclisation/Fluorination of nitrogen containing dienes in superacid HF/SbF₅: a new route to 3 and 4-fluoropiperidines.

Emilie Vardelle^{*a*}, Diego Gamba-Sanchez^{*a*}, Agnès Martin Mingot^{*a*}, Marie-Paule Jouannetaud^{*a*}, Sébastien Thibaudeau^{**a*} and Jérôme Marrot^{*b*}

^a Laboratoire"Synthèse and Réactivité des Substances Naturelles", UMR 6514, 40, avenue du Recteur Pineau, F-86022 Poitiers Cedex, France. Fax: 33-549453501; Tel: 33-549453702; <u>sebastien.thibaudeau@univ-poitiers.fr</u> ^b Institut Lavoisier de Versailles, UMR 8180, Université de Versailles, 45 Avenue des Etats Unis,78035 Versailles cedex, France

Supporting Information

General Method

The authors draw the reader's attention to the dangerous features of superacidic chemistry. Handling of hydrogen fluoride and antimony pentafluoride must be done by experienced chemists with all the necessary safety arrangements in place.

Reactions performed in superacid were carried out in a sealed Teflon® flask with a magnetic stirrer. No further precautions have to be taken to prevent mixture from moisture (test reaction worked out in anhydrous conditions leads to the same results as expected).

Yields refer to isolated pure products.

¹H, ¹³C and ¹⁹F NMR were recorded on a 300 MHz Brüker spectrometer using CDCl₃ as solvent.

Melting points were determined in a capillary tube and are uncorrected.

Mass spectra were performed with coupled gas chromatography Trace 6C Thermo Finnigan/Thermo Finnigan Automass (electronic impact).

High-resolution mass spectra were performed on a Micromass ZABSpec TOF by the Centre Regional de Mesures Physiques de l'Ouest, Université Rennes (France).

All separations were done under flash-chromatography conditions on silica gel (15-40 μ m).

Crystals of dimensions, $0.30 \ge 0.20 \ge 0.06 \text{ mm}(2\mathbf{j})$ was glued with Araldite on a glass fiber and $0.24 \ge 0.16 \ge 0.04 \text{ mm}(2\mathbf{e})$ was mounted with Paratone-N oil (Hampton Research) coating and immediately placed in a nitrogen cold stream.

X-ray intensity data were collected on a Bruker-Nonius X8-APEX2 CCD area-detector diffractometer using Mo- K_{α} radiation ($\lambda = 0.71073$ Å). Data reductions were accomplished using SAINT V7.03⁻¹. The substantial redundancy (6.93 for **2j** and 5.46 for **2e**) in data allowed a semi-empirical absorption correction (SADABS V2.10)¹ to be applied, on the basis

of multiple measurements of equivalent reflections. The structures were solved by direct methods, developed by successive difference Fourier syntheses, and refined by full-matrix least-squares on all F^2 data using SHELXTL V6.14². Hydrogen atoms were included in calculated positions and allowed to ride on their parent atoms.

- (1) APEX2 version 1.0-8; Bruker AXS: Madison, WI, 2003
- (2) SHELXTL version 6.14; Bruker AXS: Madison, WI, 2001

Optimized procedure in superacidic media

To a mixture of HF/SbF₅ (3 mL, 8/1 molar ratio) maintained at the indicated temperature was added nitrogen derivative (1 mmol). The mixture was magnetically stirred at the same temperature for reaction time. The reaction mixture was then neutralized with water-ice-Na₂CO₃, extracted with dichloromethane (\times 3). The combined organic phases were dried (MgSO₄) and concentrated *in vacuo*. Products were isolated by column chromatography over silica gel.

⁶/^F **Compound 2a.HCI: 4-fluoro-4-methylpiperidine hydrochloride:** Optimized procedure (0°C, 3 min reaction time) was followed, starting from 585 mg of **1a** (6.02 mmol). Addition in the crude mixture of acidified methanol (HCl) afforded 644 mg of the title compound as a colourless oil after evaporation of methanol (70%). ¹H NMR (300 MHz, CDCl₃/10% MeOD, ppm): δ 1.47 (d, ³*J*_{*H*-*F*} = 21.6 Hz, 3H, H-6) ; 2.04 (m, 3H, H-3 a and/or b) ; 2.16 (m, 1H, H-3 a or b) ; 3.18 (m, 2H, H-2 a and/or b) ; 3.35 (m, 2H, H-2a and/or b) ; 3.49 (m, 2H, NH₂). ¹³C NMR (75 MHz, CDCl₃/10% MeOD, ppm): δ 26.7 (d, ²*J*_{*C*-*F*} = 24 Hz, CH₃, C-6) ; 32.7 (d, ²*J*_{*C*-*F*} = 22 Hz, CH₂, C-3) ; 40.0 (d, ³*J*_{*C*-*F*} = 2 Hz, CH₂, C-2) ; 90.0 (d, ¹*J*_{*C*-*F*</sup> = 171 Hz, C-4). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ _F -162.90 ppm), ppm): -154.44. HRMS (EI): Calc for C₆H₁₂NF: 117.09538, found 117.0951.}

^{6'} F **Compound 2b.HCI: 4-fluoro-1,4-dimethylpiperidine hydrochloride:** Optimized procedure (0°C, 3 min reaction time) was followed, starting from 300 mg of **1b** (2.70 mmol). Addition in the crude mixture acidified methanol (HCl) afforded 381 mg of the title compound as a colourless oil after evaporation of methanol (85%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.48 (d, ³*J*_{*H*-*F*} = 21.6 Hz, 3H, H-6) ; 2.02 (m, 2H, H-3 a and/or b) ; 2.39 (m, 1H, H-3 a or b) ; 2.52 (m, 1H, H-3 a or b) ; 2.84 (s, 3H, H-5) ; 3.11 (m, 2H, H-2 a and/or b) ; 3.38 (m, 2H, H-2 a and/or b). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 26.2 (d, ²*J*_{*C*-*F*} = 23 Hz, CH₃, C-6) ; 33.3 (d, ²*J*_{*C*-*F*} = 22 Hz, 2 CH₂, C-3) ; 42.8 (CH₃, C-5) ; 50.2 (2 CH₂, C-2) ; 89.3 (d, ¹*J*_{*C*-*F*</sup> = 170 Hz, C-4). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ _F -162.90 ppm), ppm): -154.83. HRMS (EI): Calc for C₇H₁₃NF: 130.10320, found 130.1034.}

^{12'} F **Compound 2d: 4-fluoro-4-methyl-1-(pentafluorobenzyl) piperidine:** Optimized procedure (0°C, 3 min reaction time) was followed, starting from 385 mg of **1d** (1.39 mmol). Purification by flash column chromatography (chloroform) afforded 279 mg of the title compound as a colourless oil (68%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.33 (d, ${}^{3}J_{H-F}$ = 21.4 Hz, 3H, H-12) ; 1.68 (m, 4H, H-3) ; 2.39 (m, 2H, H-2 a and/or b) ; 2.66 (m, 2H, H-2 a and/or b) ; 3.74 (s, 2H, H-5). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 27.0 (d, ${}^{2}J_{C-F}$ = 24 Hz, CH₃, C-12) ; 36.4 (d, ${}^{2}J_{C-F}$ = 21.7 Hz, 2 CH₂, C-3) ; 48.4 (2 CH₂, C-2) ; 48.7 (CH₂, C-5) ; 91.6 (d, ${}^{1}J_{C-F}$ = 169 Hz, C-4) ; 110.6 (m, C-6) ; 135-148 (C-7, C-8, C-9, C-10, C-11). ¹⁹F {¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ F -162.90 ppm), ppm): -162.61 (C-F_{arom}), -155.41 (2 C-F_{arom}) ; -152.75 (C-F); -141.60 (2 C-F_{arom}). MS (EI, 70 ev): *m/z* (relative intensity %) 297 (10), 276 (18), 181 (100), 83 (100). HRMS (ESI): Calc for C₁₃H₁₃NF₆: 297.0952, found 297.0946.

⁶ **Compound 2e:** 1-(4-nitrobenzyl)-4-fluoro-4-methylpiperidine: Optimized procedure (0°C, 3 min reaction time) was followed, starting from 300 mg of 1e (1.29 mmol). Purification by flash column chromatography (99/1: dichloromethane/methanol) afforded 114 mg of the title compound as a colourless powder (35%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.36 (d, ³*J*_{*H*-*F*} = 21.4 Hz, 3H, H-6) ; 1.66 and 1.79 (m, 2H, H-3 a and/or b) ; 2.37 (m, 2H, H-2 a and/or b) and 2.60 (m, 2H, H-2 a and/or b) ; 3.60 (s, 2H, H-5) ; 7.51 (d, 2H, ³*J*_{*H*-*H*} = 8.7 Hz, H-2') ; 8.17 (d, 2H, ³*J*_{*H*-*H*} = 8.1 Hz, H-3'). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 27.4 (d, ²*J*_{*C*-*F*} = 24Hz, CH₃, C-6) ; 36.9 (d, ²*J*_{*C*-*F*} = 22 Hz, 2 CH₂, C-3) ; 49.9 (d, ³*J*_{*C*-*F*} = 2Hz, 2 CH₂, C-2) ; 62.5 (CH₂, C-5) ; 92.4 (d, ¹*J*_{*C*-*F*} = 167 Hz, C-4) ; 123.9 (2 CH, C-3') ; 129.8 (2 CH, C-2') ; 147.2 (C-1') ; 147.5 (C-4'). ¹⁹F {¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ _F -162.90 ppm), ppm): -152.31. MS (EI, 70 ev): *m/z* (relative intensity %) 252 (20), 232 (20), 132 (100), 118 (97), 91 (60). HRMS (EI): Calc for C₁₃H₁₇N₂O₂F: 252.12741, found 252.1279. Mp (°C): 72.

XRD: Five sets of narrow data frames (30 s per frame) were collected at different values of θ , for 4 and 1 initial values of ϕ and ω , respectively, using 0.5° increments of ϕ or ω .

Crystal structure analysis: C_{13} H₁₇ F N₂ O₂, 100 K, triclinic, space group P-1; dimensions: a = 6.3802(11) Å, b 7.2136(11) Å, c = 14.245(3) Å, α = 96.205(7)°, β = 93.734(8) °, γ = 103.868(7)°, V = 629.95(19) Å³; Z = 2 ; total reflections collected : 26662 ; independent reflections : 3642 (2993 Fo > 4 σ (Fo)) ; data were collected up to a 2 Θ max value of 60.16° (98.6 % coverage). Number of variables: 164 ; R₁ = 0.0380, wR₂ = 0.1125, S = 1.075 ; highest residual electron density 0.454 e.Å⁻³.

Calculated parameters:

BOND LENGTHS (Å)

Bond	Length (Å)	Bond	Length (Å)
F(1)-C(4)	1.4358(12)	C(5)-H(5A)	0.9900
N(1)-C(5)	1.4607(13)	C(5)-H(5B)	0.9900
N(1)-C(2')	1.4693(13)	C(6)-C(7)	1.3965(14)
N(1)-C(2)	1.4713(13)	C(6)-C(7')	1.3982(15)
C(2)-C(3)	1.5263(15)	C(7)-C(8)	1.3917(15)
C(2)-H(2A)	0.9900	C(7)-H(7)	0.9500
C(2)-H(2B)	0.9900	C(8)-C(9)	1.3832(15)
C(3)-C(4)	1.5202(15)	C(8)-H(8)	0.9500
C(3)-H(3A)	0.9900	C(7')-C(8')	1.3861(15)
C(3)-H(3B)	0.9900	C(7')-H(7')	0.9500
C(2')-C(3')	1.5219(14)	C(8')-C(9)	1.3908(14)
C(2')-H(2'1)	0.9900	C(8')-H(8')	0.9500
C(2')-H(2'2)	0.9900	C(9)-N(2)	1.4699(13)
C(3')-C(4)	1.5192(14)	С(10)-Н(10А)	0.9800
С(3')-Н(3'1)	0.9900	C(10)-H(10B)	0.9800
С(3')-Н(3'2)	0.9900	С(10)-Н(10С	0.9800
C(4)-C(10)	1.5139(15)	N(2)-O(2)	1.2255(13)

ATOMIC COORDINATES (X 10^4) AND EQUIVALENT ISOTROPIC DISPLACEMENT PARAMETERS (Å ^2 X 10^3)

Atom	x/a	y/b	z/c	U(iso) Occ
F(1)	12681(1)	6859(1)	4807(1)	23(1)
N(1)	10191(1)	3707(1)	2768(1)	16(1)
C(2)	9705(2)	5559(1)	3077(1)	18(1)
C(3)	11778(2)	7180(2)	3204(1)	19(1)
C(2')	11633(2)	3261(1)	3511(1)	17(1)
C(3')	13785(2)	4774(2)	3640(1)	18(1)
C(4)	13501(2)	6795(2)	3892(1)	17(1)
C(5)	8196(2)	2175(2)	2568(1)	18(1)
C(6)	6896(2)	2301(1)	1659(1)	16(1)
C(7)	4648(2)	1569(2)	1564(1)	18(1)
C(8)	3416(2)	1596(1)	725(1)	17(1)
C(7')	7908(2)	3061(2)	895(1)	18(1)
C(8')	6715(2)	3092(1)	50(1)	17(1)
C(9)	4479(2)	2361(1)	-14(1)	16(1)
C(10)	15625(2)	8318(2)	3991(1)	23(1)
N(2)	3204(2)	2372(1)	-910(1)	18(1)
O(1)	1210(1)	1834(1)	-946(1)	26(1)
O(2)	4174(1)	2912(1)	-1585(1)	26(1)
H(2A)	9038	5492	3685	21
H(2B)	8657	5827	2599	21
H(3A)	12356	7328	2581	23
H(3B)	11433	8403	3442	23
H(2'1)	11882	1972	3330	20
H(2'2)	10948	3244	4115	20
H(3'1)	14739	4480	4149	21
H(3'2)	14504	4718	3046	21
H(5A)	7290	2243	3103	22
H(5B)	8567	914	2522	22
H(7)	3950	1046	2080	21
H(8)	1886	1101	662	21
H(7')	9436	3564	955	21
H(8')	7406	3598	-471	20
H(10A)	15359	9588	4164	35
H(10B)	16277	8296	3387	35
H(10C)	16615	8055	4486	35

Angle	Valeur (°)	Angle	Valeur (°)
C(5)-N(1)-C(2')	110.43(8)	N(1)-C(5)-C(6)	112.79(8)
C(5)-N(1)-C(2)	110.63(8)	N(1)-C(5)-H(5A)	109.0
C(2')-N(1)-C(2)	109.18(8)	C(6)-C(5)-H(5A)	109.0
N(1)-C(2)-C(3)	110.30(8)	N(1)-C(5)-H(5B)	109.0
N(1)-C(2)-H(2A)	109.6	C(6)-C(5)-H(5B)	109.0
C(3)-C(2)-H(2A)	109.6	H(5A)-C(5)-H(5B)	107.8
N(1)-C(2)-H(2B)	109.6	C(7)-C(6)-C(7')	119.05(9)
C(3)-C(2)-H(2B)	109.6	C(7)-C(6)-C(5)	119.52(9)
H(2A)-C(2)-H(2B)	108.1	C(7')-C(6)-C(5)	121.38(9)
C(4)-C(3)-C(2)	112.02(9)	C(8)-C(7)-C(6)	120.97(10)
C(4)-C(3)-H(3A)	109.2	C(8)-C(7)-H(7)	119.5
C(2)-C(3)-H(3A)	109.2	C(6)-C(7)-H(7)	119.5
C(4)-C(3)-H(3B)	109.2	C(9)-C(8)-C(7)	118.18(9)
C(2)-C(3)-H(3B)	109.2	C(9)-C(8)-H(8)	120.9
H(3A)-C(3)-H(3B)	107.9	C(7)-C(8)-H(8)	120.9
N(1)-C(2')-C(3')	109.51(8)	C(8')-C(7')-C(6)	120.99(9)
N(1)-C(2')-H(2'1)	109.8	C(8')-C(7')-H(7')	119.5
C(3')-C(2')-H(2'1)	109.8	C(6)-C(7')-H(7')	119.5
N(1)-C(2')-H(2'2)	109.8	C(7')-C(8')-C(9)	118.21(9)
C(3')-C(2')-H(2'2)	109.8	C(7')-C(8')-H(8')	120.9
H(2'1)-C(2')-H(2'2)	108.2	C(9)-C(8')-H(8')	120.9
C(4)-C(3')-C(2')	112.23(9)	C(8)-C(9)-C(8')	122.59(9)
C(4)-C(3')-H(3'1)	109.2	C(8)-C(9)-N(2)	118.84(9)
C(2')-C(3')-H(3'1)	109.2	C(8')-C(9)-N(2)	118.56(9)
C(4)-C(3')-H(3'2)	109.2	C(4)-C(10)-H(10A)	109.5
С(2')-С(3')-Н(3'2	109.2	C(4)-C(10)-H(10B)	109.5
H(3'1)-C(3')-H(3'2)	107.9	H(10A)-C(10)-H(10B)	109.5
F(1)-C(4)-C(10)	106.48(8)	C(4)-C(10)-H(10C)	109.5
F(1)-C(4)-C(3')	106.91(8)	H(10A)-C(10)-H(10C)	109.5
C(10)-C(4)-C(3')	112.64(9)	H(10B)-C(10)-H(10C)	109.5
F(1)-C(4)-C(3)	106.40(8)	O(2)-N(2)-O(1)	123.23(9)
C(10)-C(4)-C(3)	113.45(9)	O(2)-N(2)-C(9)	118.36(9)
C(3')-C(4)-C(3)	110.46(8)	O(1)-N(2)-C(9)	118.40(9)

ANGLES (DEG)

Compound 2e': 1-(4-nitrobenzyl)-3-fluoro-3-methylpiperidine:

Optimized procedure (-78°C, 3 min reaction time) was followed, starting from 500 mg of **1e** (2.16 mmol). Purification by flash column chromatography (98/1/1: petroleum ether/ethyl acetate/diethylamine) afforded 285 mg of the title compound as a colourless oil (52%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.33 (d, ³*J*_{*H*-*F*} = 21.6 Hz, 3H, H-8) ; 1.53 (m, 2H, H-5 and H-4) ; 1.84 (m, 2H, H-5 and H-4) ; 2.20 (m, 2H, H-6 and H-2) ; 2.55 (m, 2H, H-6 and H-2) ; 3.60 (s, 2H, H-7) ; 7.50 (d, 2H, ³*J*_{*H*-*H*} = 8.8 Hz, H-2') ; 8.14 (d, 2H, ³*J*_{*H*-*H*} = 8.7 Hz, H-3'). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 22.3 (d, ³*J*_{*C*-*F*} = 4 Hz, CH₂, C-5) ; 25.3 (d, ²*J*_{*C*-*F*} = 24 Hz, CH₃, C-8) ; 35.3 (d, ²*J*_{*C*-*F*} = 22 Hz, CH₂, C-4) ; 53.3 (CH₂, C-6) ; 62.1 (CH₂, C-7) ; 62.3 (d, ²*J*_{*C*-*F*</sup> = 23 Hz, CH₂, C-2) ; 92.5 (d, ¹*J*_{*C*-*F*</sup> = 169 Hz, C-3) ; 123.8 (2 CH, C-2') ; 129.6 (CH, C-3') ; 146.7 (C-1') ; 147.4 (C-4'). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ F -162.90 ppm), ppm): -147.44. MS (EI, 70 ev): *m*/*z* (relative intensity %) 252 (28), 233 (15), 132 (98), 118 (100), 91 (60). HRMS (EI): Calc for C₁₃H₁₇N₂O₂F: 252.12741, found 252.1277.}}

$H_{5}O$ N_{1} A_{6} $H_{5}O$ A_{1} A_{1} A_{2} A_{2} A_{1} A_{2} $A_$

⁶⁷ ^F **Compound 2f: 1-formamide-4-fluoro-4-methylpiperidine:** Optimized procedure (0°C, 60 min reaction time) was followed, starting from 300 mg of **1f** (2.40 mmol). Purification by flash column chromatography (99/1: diethyl ether/methanol) afforded 118 mg of the title compound as a colourless oil (34%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.34 (d, ³*J*_{*H-F*} = 21.5 Hz, 3H, H-6) ; 1.46 (m, 2H) and 1.86 (m, 2H), H-3 ; 2.95 (m, 1H) and 3.38 (m, 2H) and 4.17 (m, 1H), H-2 ; 7.98 (s, 1H, H-5). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 26.9 (d, ²*J*_{*C-F*} = 24 Hz, CH₃, C-6) ; 35.3 (d, ²*J*_{*C-F*} = 22 Hz, CH₂) and 36.7 (d, ²*J*_{*C-F*} = 23 Hz, CH₂), C-3 ; 35.5 (d, ³*J*_{*C-F*} = 3 Hz, CH₂) and 41.7 (d, ³*J*_{*C-F*} = 2 Hz, CH₂), C-2 ; 92.5 (d, ¹*J*_{*C-F*} = 169 Hz, C-4) ; 160.6 (CH, C-5). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ _F -162.90 ppm), ppm): -155.25. MS (EI, 70 ev): *m/z* (relative intensity %) 147 (100), 146 (54), 132 (27), 126 (10), 112 (35), 98 (38), 87 (75), 58 (74). HRMS (EI): Calc for C₇H₁₂NOF: 145.09029, found 145.0897.

 $\begin{array}{c}
6 \\
5 \\
0 \\
2 \\
1 \\
3 \\
4 \\
F
\end{array}$

^{7'} ^Γ **Compound 2g: 1-acetyl-4-fluoro-4-methylpiperidine:** Optimized procedure (-30°C, 5 min reaction time) was followed, starting from 400 mg of **1g** (2.88 mmol). Purification by flash column chromatography (98/2: diethyl ether/methanol) afforded 137 mg of the title compound as a colourless oil (30%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.39 (d, ³*J*_{*H-F*} = 21.4 Hz, 3H, H-7) ; 1,58 (m, 2H) and 1.84 (m, 2H), H-3 ; 2.11 (s, 3H, H-6) ; 2.98 (m, 1H, H-2 a or b) and 3.44 (m, 1H, H-2 a or b) ; 3.63 (m, 1H, H-2 a or b) and 4.43 (m, 1H, H-2 a or b). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 21.4 (CH₃, C-6) ; 27.4 (d, ²*J*_{*C-F*} = 24 Hz, CH₃, C-1) ; 36.3 (d, ²*J*_{*C-F*} = 22 Hz, CH₂) and 37.2 (d, ²*J*_{*C-F*} = 22 Hz, CH₂), C-3 ; 37.9 and 42.9 (2 CH₂, C-2) ; 92.1 (d, ¹*J*_{*C-F*} = 168 Hz, C, C-4) ; 168.8 (C-5). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ_F -162.90 ppm), ppm): δ – 154.56. MS (EI, 70 ev): *m/z* (relative intensity %) (16), 159 (100), 139 (72), 116 (60), 96 (80), 82 (68), 57 (32). HRMS (ESI): Calc for C₈H₁₄NOF: 159.1059, found 159.1052.

 F_3C_5O

Compound 2h: 4-fluoro-4-methyl-1-(trifluoroacetyl) piperidine: Optimized procedure (-30°C, 5 min reaction time) was followed, starting from 500 mg of **1h** (2.58 mmol). Purification by flash column chromatography (90/10: petroleum ether/ethyl acetate) afforded 378 mg of the title compound as a colourless oil (69%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.42 (d, ³*J*_{*H*-*F*} = 21.4 Hz, 3H, H-7) ; 1.71 (m, 2H, H-3 a and/or b) ; 1.95 (m, 2H, H-3 a and/or b) ; 3.12 (m, 1H, H-2 a or b) ; 3.47 (m, 1H, H-2 a or b) ; 3.86 (m, 1H, H-2 a or b) ; 4.40 (m, 1H, H-2 a or b). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 26.9 (d, ²*J*_{*C*-*F*} = 23 Hz, CH₃, C-7) ; 35.8 and 36.8 (d, ²*J*_{*C*-*F*} = 22 Hz, 2 CH₂, C-3) ; 39.7 and 41.8 (2 CH₂, C-2) ; 91.6 (d, ¹*J*_{*C*-*F*} = 168 Hz, C-4) ; 116.5 (q, ¹*J*_{*C*-*F*</sup> = 286 Hz, C-6) ; 155.2 (q, ²*J*_{*C*-*F*</sup> = 36 Hz, C-5). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ _F -162.90 ppm), ppm): δ -70 (CF₃) ; -154.81 (F). MS}}

(EI, 70 ev): *m/z* (relative intensity %) 213 (100), 178 (99), 152 (38), 144 (96), 81 (60). HRMS (EI): Calc for C₈H₁₁NOF₄: 213.07768, found 213.0770.

Compound 2h': 4-hydroxy-4-methyl-1-(trifluoroacetyl) piperidine: Optimized procedure (-30°C, 60 min reaction time) was followed, starting from 388 mg of **1h** (2.01 mmol). Purification by flash column chromatography (90/10: petroleum ether/ethyl acetate) afforded 119 mg of compound **2h** (28%). The title compound **2h'** (131 mg, 31%) was then eluted (80/20: petroleum ether/ethyl acetate) as a white powder. ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.28 (s, 3H, H-7) ; 1.67 (m, 4H, H-3 a and b) ; 3.25 (m, 1H, H-2 a or b) ; 3.56 (m, 1H, H-2 a or b) ; 3.76 (m, 1H, H-2 a or b) ; 4.26 (m, 1H, H-2 a or b). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 30.9 (CH₃, C-7) ; 37.4 and 38.2 (2 CH₂, C-3) ; 39.1 and 41.0 (2 CH₂, C-2) ; 68.5 (C-4) ; 117.5 (q, ¹*J*_{C-F} = 284 Hz, C-6) ; 154.3 (q, ²*J*_{C-F} = 35 Hz, C-5). MS (EI, 70 ev): *m/z* (relative intensity %) 211 (14), 193 (100), 178 (88), 140 (40). HRMS (EI): Calc for C₈H₁₂NO₂F₃: 211.08201, found 211.0827. Mp (°C): 70.

Compound 2j: 4-fluoro-4-methyl-1-(4-nitrobenzoyl) piperidine: Optimized procedure (-30°C, 5 min reaction time) was followed, starting from 500 mg of 1j (2.03 mmol). Purification by flash column chromatography (70/30: petroleum ether/ethyl acetate) afforded 296 mg of the title compound as a colourless powder (55%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.43 (d, ³*J*_{*H*-*F*} = 21.4 Hz, 3H, H-6) ; 1.79 (m, 4H, H-") ; 3.19 (m, 1H) and 4.55 (m, 1H), H-2 a and/or b ; 3.36 (m, 2H, H-2 a and/or b) ; 7.58 (d, ³*J*_{*H*-*H*} = 8.7 Hz, 2H, H-2') ; 8.28 (d, ³*J*_{*H*-*H*} = 6.8 Hz, 2H, H-3'). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 27.0 (d, ²*J*_{*C*-*F*} = 24 Hz, CH₃, C-6) ; 35.9 (d, ²*J*_{*C*-*F*} = 168 Hz, C-4) ; 123.9 (2 CH, C-3') ; 127.9 (2 CH, C-3) 2') ; 142.5 (C-1') ; 148.3 (C-4') ; 170.0 (C-5). ${}^{19}F{}^{1}H$ NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ_F -162.90 ppm) ppm): -154.72. MS (EI, 70 ev): *m/z* (relative intensity %) 266 (6), 247 (28), 150 (100), 104 (78), 83 (80). HRMS (ESI): Calc for C₁₃H₁₄N₂O₃F: 265.09885, found 265.0987. Mp (°C): 145.

XRD: Seven sets of narrow data frames (30 s per frame) were collected at different values of θ , for 2 and 5 initial values of ϕ and ω , respectively, using 0.5° increments of ϕ or ω .

Crystal structure analysis: C_{13} H₁₅ F N₂ O₃, room temperature, triclinic, space group P-1 ; dimensions: a = 6.6927(3) Å, b = 8.2566(3) Å, c = 12.1565(5) Å, $\alpha = 79.479(2)^{\circ}$, $\beta = 80.510(2)^{\circ}$, $\gamma = 78.922(2)^{\circ}$, V = 642.26(5)Å³ ; Z = 2; total reflections collected: 13438 ; independent reflections: 2260 (1917 Fo > 4 σ (Fo)) ; data were collected up to a 2 Θ max value of 50° (100 % coverage). Number of variables: 173; R₁ = 0.0366, wR₂ = 0.1177, S = 1.136 ; highest residual electron density 0.163 e.Å⁻³.

Calculated parameters:

BOND LENGTHS (Å)

Bond	Length (Å)	Bond	Length (Å)
C(1)-C(2)	1.381(2)	C(9)-H(9A)	0.9700
C(1)-C(6)	1.387(2)	C(9)-H(9B)	0.9700
C(1)-H(1)	0.9300	C(10)-C(11)	1.513(2)
C(2)-C(3)	1.375(2)	С(10)-Н(10А)	0.9700
C(2)-H(2)	0.9300	C(10)-H(10B)	0.9700
C(3)-C(4)	1.378(2)	C(11)-F(18)	1.4301(19)
C(3)-N(14)	1.469(2)	C(11)-C(12)	1.503(3)
C(4)-C(5)	1.380(2)	C(11)-C(19)	1.508(3)
C(4)-H(4)	0.9300	C(12)-C(13)	1.505(3)
C(5)-C(6)	1.392(2)	С(12)-Н(12А)	0.9700
C(5)-H(5)	0.9300	C(12)-H(12B)	0.9700
C(6)-C(7)	1.504(2)	С(13)-Н(13А)	0.9700
C(7)-O(17)	1.2266(17)	C(13)-H(13B)	0.9700
C(7)-N(8)	1.3451(19)	N(14)-O(16)	1.2167(19)
N(8)-C(9)	1.4603(19)	N(14)-O(15)	1.2172(19)
N(8)-C(13)	1.4632(19)	С(19)-Н(19А)	0.9600
C(9)-C(10)	1.507(2)	C(19)-H(19B)	0.9600
		С(19)-Н(19С)	0.9600

ATOMIC COORDINATES (X 10^4) AND EQUIVALENT ISOTROPIC DISPLACEMENT PARAMETERS (Å ^2 X 10^3)

Atom	x/a	y/b	z/c	U(iso) Occ
C(1)	1627(2)	2802(2)	2598(1)	43(1)
C(2)	3117(2)	2943(2)	1670(1)	45(1)
C(3)	4920(2)	3413(2)	1794(1)	40(1)
C(4)	5286(2)	3752(2)	2804(1)	41(1)
C(5)	3797(2)	3583(2)	3730(1)	40(1)
C(6)	1959(2)	3099(2)	3635(1)	37(1)
C(7)	211(2)	3030(2)	4586(1)	38(1)
N(8)	527(2)	2003(2)	5559(1)	44(1)
C(9)	2379(2)	798(2)	5774(1)	47(1)
C(10)	3257(3)	1141(2)	6757(2)	54(1)
C(11)	1685(3)	1225(2)	7802(1)	54(1)
C(12)	-272(3)	2366(2)	7537(2)	65(1)
C(13)	-1074(2)	2005(2)	6537(1)	54(1)
N(14)	6512(2)	3555(2)	809(1)	51(1)
O(15)	8022(2)	4122(2)	889(1)	71(1)
O(16)	6237(2)	3103(2)	-45(1)	72(1)
O(17)	-1454(2)	3902(2)	4437(1)	52(1)
F(18)	1182(2)	-418(1)	8123(1)	63(1)
C(19)	2513(5)	1558(3)	8805(2)	95(1)
H(1)	389	2504	2528	51
H(2)	2906	2726	978	55
H(4)	6510	4086	2862	50
H(5)	4023	3794	4421	48
H(9A)	3395	864	5106	56
H(9B)	2051	-323	5936	56
H(10A)	3771	2191	6548	65
H(10B)	4406	265	6927	65
H(12A)	-31	3513	7388	78
H(12B)	-1310	2258	8192	78
H(13A)	-1520	925	6720	65
H(13B)	-2250	2848	6357	65
H(19A)	1489	1474	9457	143
H(19B)	2858	2661	8651	143
H(19C)	3719	752	8945	143

Angle	Valeur (°)	Angle	Valeur (°)
C(2)-C(1)-C(6)	120.71(14)	C(9)-C(10)-H(10A)	109.1
C(2)-C(1)-H(1)	119.6	С(11)-С(10)-Н(10А)	109.1
C(6)-C(1)-H(1)	119.6	C(9)-C(10)-H(10B)	109.1
C(3)-C(2)-C(1)	118.41(13)	С(11)-С(10)-Н(10В)	109.1
C(3)-C(2)-H(2)	120.8	H(10A)-C(10)-H(10B)	107.9
C(1)-C(2)-H(2)	120.8	F(18)-C(11)-C(12)	106.29(15)
C(2)-C(3)-C(4)	122.48(14)	F(18)-C(11)-C(19)	105.05(15)
C(2)-C(3)-N(14)	118.48(13)	C(12)-C(11)-C(19)	114.17(17)
C(4)-C(3)-N(14)	119.04(14)	F(18)-C(11)-C(10)	105.46(13)
C(3)-C(4)-C(5)	118.55(13)	C(12)-C(11)-C(19)	111.19(14)
C(3)-C(4)-H(4)	120.7	F(18)-C(11)-C(19)	113.79(18)
C(5)-C(4)-H(4)	120.7	C(12)-C(11)-C(10)	113.20(14)
C(4)-C(5)-C(6)	120.42(13)	C(19)-C(11)-C(10)	108.9
C(4)-C(5)-H(5)	119.8	C(11)-C(12)-C(13)	108.9
C(6)-C(5)-H(5)	119.8	С(11)-С(12)-Н(12А)	108.9
C(1)-C(6)-C(5)	119.41(13)	C(13)-C(12)-H(12A)	108.9
C(1)-C(6)-C(7)	117.48(13)	С(11)-С(12)-Н(12В)	107.8
C(5)-C(6)-C(7)	122.88(12)	С(13)-С(12)-Н(12В)	110.32(14)
O(17)-C(7)-N(8)	122.64(13)	H(12A)-C(12)-H(12B)	109.6
O(17)-C(7)-C(6)	118.47(13)	N(8)-C(13)-C(12)	109.6
N(8)-C(7)-C(6)	118.89(12)	N(8)-C(13)-H(13A)	109.6
C(7)-N(8)-C(9)	126.47(12)	С(12)-С(13)-Н(13А)	109.6
C(7)-N(8)-C(13)	120.59(12)	H(13A)-C(13)-H(13B)	108.1
C(9)-N(8)-C(13)	112.94(12)	O(16)-N(14)-O(15)	123.68(14)
N(8)-C(9)-C(10)	110.77(13)	O(16)-N(14)-C(3)	117.91(14)
N(8)-C(9)-H(9A)	109.5	O(15)-N(14)-C(3)	118.41(14)
C(10)-C(9)-H(9A)	109.5	С(11)-С(19)-Н(19А)	109.5
N(8)-C(9)-H(9B)	109.5	С(11)-С(19)-Н(19В)	109.5
C(10)-C(9)-H(9B)	109.5	H(19A)-C(19)-H(19B)	109.5
H(9A)-C(9)-H(9B)	108.1	С(11)-С(19)-Н(19С)	109.5
C(9)-C(10)-C(11)	112.34(14)	H(19A)-C(19)-H(19C)	109.5
		H(19B)-C(19)-H(19C)	109.5

ANGLES (DEG)

⁶ ^{m F} Compound 2k: 4-fluoro-4-methyl-1-(2-nitrobenzoyl) piperidine: Optimized procedure (-30°C, 5 min reaction time) was followed, starting from 500 mg of 1k (2.03 mmol). Purification by flash column chromatography (99/1: dichloromethane/NH₃aq) afforded 284 mg of the title compound as a colourless oil (53%). The second compound *N*-(2-fluoropropyl)-*N*-(2-hydroxypropyl)-2-nitrobenzamide 2k' (95 mg, 17 %) was then eluted (98/1/1: dichloromethane/methanol/NH₃aq) as a colourless oil.

Compound 2k: ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.39 (d, ³*J*_{*H*-*F*} = 21.5 Hz, 3H, H-6) ; 1.77 (m, 4H, H-2) ; 3.25 (m, 3H) and 4.58 (m, 1H), H-3 a and/or b) ; 7.36 (d, ³*J*_{*H*-*H*} = 7.5 Hz, 1H, H-6') ; 7.54 (d, ³*J*_{*H*-*H*} = 7.9 Hz, 1H, H-5') ; 7.68 (d, ³*J*_{*H*-*H*} = 7.4 Hz, 1H, H-4') ; 8.15 (d, ³*J*_{*H*-*H*} = 8.1 Hz, 1H, H-3'). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 27.3 (d, ²*J*_{*C*-*F*} = 24 Hz, CH₃, C-6) ; 36.4 (d, ²*J*_{*C*-*F*} = 22 Hz, 2 CH₂, C-3) ; 38.1 (d, ³*J*_{*C*-*F*} = 2 Hz, 2 CH₂, C-2) ; 92.4 (d, ¹*J*_{*C*-*F*} = 169 Hz, C-4) ; 125.1 (CH, C-3') ; 128.3 (CH, C-6') ; 130.1 (CH, C-4') ; 133.3 (C-1') ; 134.8 (CH, C-5') ; 145.6 (C-2') ; 166.4 (C-5). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ _F -162.90 ppm), ppm):-155.26 . MS (EI, 70 ev): *m/z* (relative intensity %) 252 (26), 232 (51), 132 (65), 112 (100), 91 (73). HRMS (EI): Calc for C₁₃H₁₅N₂0₃F: 266.10667, found 266.1058.

It should be pointed out that in 13 C NMR spectrum of compound **2k'**, peaks are doubled due to the presence of rotamers.

1 ² ³ ³ ² ¹ Compound **2k':** *N*-(2-fluoropropyl)-*N*-(2-hydroxypropyl)-2nitrobenzamide: ¹H NMR (300 MHz, CDCl₃, ppm): 1.30 (dd, ³*J*_{*H*-*F*} = 23.5 Hz, ⁴*J*_{*H*-*F*} = 6.4 Hz, 3H, H-1) ; 1.34 (d, ³*J*_{*H*-*H*} = 6.4 Hz, 3H, H-1') ; 2.71 (sl, 1H, OH) ; 2.80 (m, 4H, H-3 and H-3') ; 4.76 (dm, ¹*J*_{*H*-*F*} = 48.6 Hz, H-2) ; 5.28 (m, 1H, H-2') ; 7.72 (dd, 1H, ⁴*J*_{*H*-*H*} = 1.5 Hz, ³*J*_{*H*-*H*} = 7.4 Hz, H-5" or H-6") ; 7.59 (dd, 1H, ⁴*J*_{*H*-*H*} = 1.9 Hz, ³*J*_{*H*-*H*} = 7.6 Hz, H-5" or H-6") ; 7.63 (t, 1H, ⁴*J*_{*H*-*H*} = 1.9 Hz, H-4") ; 7.88 (d, ³*J*_{*H*-*H*} = 7.3 Hz, 1H, H-3"). ¹³C NMR (75 MHz, CDCl₃, ppm): δ .17.6 and 17.7 (CH₃, C-1') ; 18.6 and 18.7 (d, ²*J*_{*C*-*F*} = 22 Hz, CH₃, C-1) ; 54.1 and 54.2 (CH₂, C-3') ; 54.7 and 54.8 (d, ²*J*_{*C*-*F*} = 21 Hz, CH₂, C-3) ; 73.0 and 73.1 (CH, C-2') ; 90.7 and 90.8 (d, ${}^{1}J_{C-F}$ = 165 Hz, C-2) ; 124.1 (CH, C-3") ; 128.3 (C-1") ; 130.2 (CH, C-6") ; 131.9 (CH, C-4") ; 133.3 (CH, C-5") ; 148.3 (C-2") ; 165.4 (C-4). ${}^{19}F{}^{1}H{}$ NMR (282 MHz, CDCl₃, external standard C₆F₆ ($\delta_{\rm F}$ -162.90 ppm), ppm): -179.27 and -179.24. MS (EI, 70 ev): *m/z* (relative intensity %) 250 (15), 193 (26), 119 (39), 106 (70), 72 (100), 60 (69). HRMS (EI): Calc for C₁₁H₁₂N₂O₃F: 239.08320, found 239.0840 and for C₁₁H₁₃N₂O₄: 237.08753, found 237.0883.

nitrophenyl) methanone:

Optimized procedure (0°C, 3 min reaction time) was followed, starting from 300 mg of **1m** (1.15 mmol). Purification by flash column chromatography (99/1: dichloromethane/methanol) afforded 240 mg of the title compound as a colourless powder (86%).

¹H NMR (300 MHz, CDCl₃, ppm): δ 1.28 (d, ³*J*_{*H*-*F*} = 20.8 Hz, 3H, H-8 or H-9) ; 1.40 (d, ³*J*_{*H*-*F*} = 21.4 Hz) and 1.41 (d, ³*J*_{*H*-*F*} = 21.3 Hz), 3H, H-9 or H-8 ; 1.96 (m, 2H, H-4) ; 2.39 (m, 1H, H-3) ; 3.47 (m, 3H, H-5 and H-2 a or b) ; 3.82 (m, 1H, H-2 a or b) ; 7.65 (d, ³*J*_{*H*-*H*} = 8.8 Hz) and 7.67 (d, ³*J*_{*H*-*H*} = 8.8 Hz), 2H, H-2' ; 8.25 (d, ³*J*_{*H*-*H*} = 8.8 Hz) and 8.27 (d, ³*J*_{*H*-*H*} = 8.8 Hz), 2H, H-3'. ¹³C NMR (75 MHz, CDCl₃, ppm): δ 25.3 and 27.2 (d, CH₂, ³*J*_{*C*-*F*} = 4 Hz, C-4) ; 25.6 (d, CH₃, ²*J*_{*C*-*F*} = 24.6 Hz) and 25.8 (d, CH₃, ²*J*_{*C*-*F*} = 24.7 Hz) and 26.3 (d, CH₃, ²*J*_{*C*-*F*} = 26.2 Hz) and 26.7 (d, CH₃, ²*J*_{*C*-*F*} = 24.8 Hz), C-8 and C-9 ; 46.7 and 49.8 (CH₂, C-5) ; 47.2 (d, CH, ²*J*_{*C*-*F*} = 22.7 Hz) and 49.0 (d, CH, ²*J*_{*C*-*F*} = 22.2 Hz), C-3 ; 47,3 and 49.9 (d, 2 CH₂, ³*J*_{*C*-*F*} = 4.8 Hz, C-4) ; 128.1 (2 CH, C-2') ; 142.5 and 142.7 (C-1') ; 148.4 (C-4') ; 167.3 and 167.4 (C-6). ¹⁹F{¹H} NMR (282 MHz, CDCl₃, external standard C₆F₆ (δ F -162.90 ppm), ppm):-151.41 and -151.31. MS (EI, 70 ev): *m/z* (relative intensity %) 168 (35), 150 (61), 73 (88), 59 (100). HRMS (EI): Calc for C₁₄H₁₇N₂O₃F: 280.12232, found 280.1220. Mp (°C): 69.

Compound 2p: 4,6-dimethyl-3,4-dihydro-2*H*-1,2-benzothiazine 1,1-

dioxide: Optimized procedure (0°C, 3 min reaction time) was followed, starting from 507 mg of **1p** (1.98 mmol). Purification by flash column chromatography (95/5: petroleum ether/ethyl acetate) afforded 340 mg of the title compound as a white power (81%). ¹H NMR (300 MHz, CDCl₃, ppm): δ 1.34 (d, ³*J*_{*H*-*H*} = 7.1 Hz, 3H, H-9) ; 2.37 (s, 3H, H-10) ; 2.99 (m, 1H, H-12) ; 3.43 (m, 1H, H-3 or H-3') ; 3.83 (m, 1H, H-3 or H-3') ; 5.00 (t, ³*J*_{*H*-*H*} = 7.7 Hz, 1H, H-2) ; 7.13 (s, 1H, H-5) ; 7.17 (d, ³*J*_{*H*-*H*} = 7.8 Hz, 1H, H-7) ; 7.90 (d, ³*J*_{*H*-*H*} = 9.6 Hz, 1H, H-8). ¹³C NMR (75 MHz, CDCl₃, ppm): δ 20.2 (CH₃, C-9) ; 22.0 (CH₃, C-10) ; 31.6 (CH, C-4) ; 48.2 (CH₂, C-3) ; 123.2 (CH, C-8) ; 128.2 (CH, C-7) ; 129.0 (CH, C-5) ; 134.3 (C-11) ; 140.2 (C-6) ; 143.3 (C-12). MS (EI, 70 ev): *m*/*z* (relative intensity %) (38), 132 (64), 117 (100), 85 (52), 83 (74). HRMS (ESI): Calc for C₁₀H₁₃NO₂S: 211.06670, found 211.0664. Mp (°C): 84.

¹H NMR of compound <u>**2a.HCl**</u>:

¹³C NMR of compound <u>**2a.HCl**</u>:

¹H NMR of compound <u>**2b.HCl**</u>:

¹³C NMR of compound <u>**2b.HCl**</u>:

¹H NMR of compound <u>2d</u>:

¹³C NMR of compound <u>2d</u>:

¹H NMR of compound <u>2e</u>:

¹³C NMR of compound <u>2e</u>:

¹H NMR of compound <u>2e'</u>:

¹³C NMR of compound <u>2e'</u>:

¹H NMR of compound <u>**2f**</u>:

¹³C NMR of compound <u>2f</u>:

¹H NMR of compound <u>2g</u>:

¹³C NMR of compound <u>2g</u>:

¹H NMR of compound <u>**2h**</u>:

¹³C NMR of compound <u>**2h**</u>:

¹H NMR of compound <u>**2h'**</u>:

¹³C NMR of compound <u>**2h'**</u>:

¹H NMR of compound <u>**2**</u>*j*:

¹³C NMR of compound <u>2j</u>:

¹H NMR of compound <u>**2k**</u>:

¹³C NMR of compound <u>**2k**</u>:

¹H NMR of compound <u>**2k'**</u>:

¹³C NMR of compound <u>**2k'**</u>:

¹H NMR of compound <u>21</u>:

¹³C NMR of compound <u>2</u>I:

¹H NMR of compound <u>**2p**</u>:

¹³C NMR of compound <u>**2p**</u>:

