Supporting Information
Design, Synthesis and DNA-Cleaving Efficiency of Photoswitchable Dimeric Azobenzene Based Enediynes
Amit Basak*, Debarati Mitra, Moumita Kar and Kumar Biradha

Bioorganic Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
Fax: 91 3222 282252; Tel: 91 322 283300;
E-mail: absk@chem.iitkgp.ernet.in

Page No. 2: Figures S1 and S2: ’H NMR and 13C spectra of compound bromoacetyl phenyl alanine benzyl ester in CDCl3
Page No. 3: Figures S3 and S4: ’H NMR and 13C spectra of compound bromoacetyl valine benzyl ester in CDCl3
Page No. 4: Figures S5 and S6: ’H NMR and 13C spectra of compound 3a in CDCl3
Page No. 5: Figures S7 and S8: ’H NMR and 13C spectra of compound 3b in CDCl3
Page No. 6: Figures S9 and S10: ’H NMR & 13C spectra of compound 4a in d6DMSO & d4 MeOH
Page No. 7: Figures S11 and S12: ’H NMR and 13C spectra of compound 4b in d6-DMSO
Page No. 8: Figures S13 and S14: ’H NMR and 13C spectra of compound 9 in CDCl3
Page No. 9: Figure S15 and S16: ’H NMR of compound 10 and 1a in CDCl3
Page No. 10: Figure S17 and S18: 13C spectra and ’H NMR of compound 1a and 2a in CDCl3
Page No. 11: Figure S19 and S20: ’H NMR and 13C spectra of compound 1b in CDCl3
Page No. 12: Figure S21 and S22: ’H NMR of compound 2b and 1c in CDCl3
Page No. 13: Figure S23 and S24: 13C spectra and ’H NMR of compound 1c and 2c in CDCl3
Page No. 14: Figure S25 and S26: ’H NMR and 13C spectra of compound 6 in CDCl3
Page No. 15: Figure S27 and S28: ’H NMR and 13C spectra of compound 7 in CDCl3
Page No. 16: Figure S29 to S30: ’H NMR and 13C spectra of compound monoacylated 2,2’-dihydroxy azobenzene in CDCl3
Page No. 17: Figure S31 to S32: ’H NMR and 13C spectra of compound 3d in CDCl3
Page No. 18: Figure S33 to S34: ’H NMR and 13C spectra of compound 3e in CDCl3
Page No. 19: Figure S35 to S36: ’H NMR and 13C spectra of compound 4d in CDCl3
Page No. 20: Figure S37 to S38: ’H NMR and 13C spectra of compound 4e in CDCl3
Page No. 21: Figure S39 to S40: ’H NMR and 13C spectra of compound 1d in CDCl3
Page No. 22: Figure S41 to S42: ’H NMR spectra of compounds 2d and 1e in CDCl3
Page No. 23: Figure S43: 13C spectra of compound 1e in CDCl3
Page No. 24: Figure S44 to S47: Thermal Isomerization Kinetics of 10 at 20 °C in CDCl3
Page No. 25: Figure S48 to S53: Thermal Isomerization Kinetics of 2a at 20 °C in CDCl3
Page No. 26: Figure S54 to S61: Thermal Isomerization Kinetics of 2b at 20 °C in CDCl3
Page No. 27: Figure S62 to S68: Thermal Isomerization Kinetics of 2c at 20 °C in CDCl3
Page No. 28: Figure S69 to S74: Bergman Cyclization Kinetics of 1a at 45 °C in CDCl3
Page No. 29: Figure S76 to S81: Bergman Cyclization Kinetics of aliphatic 1e at 30 °C in CD3CN
Page No. 30: Figure S82: DNA binding study of compound 2a by UV
Page No. 31: Figure S83: DNA binding study of compound 1a by UV
Page No. 32: Figure S84 to S87: DNA binding plots of compounds 2a-2b and 2i-2j
Page No. 33: Figure S88 to S91: DSC of enediynes 1a, 1b, 1c and 1e respectively
Page No. 34: Figure S92: NOESY spectrum of enediyne 1a/2a
Page No. 35: Figure S93: Energy minimized conformations of 1a, 2a, 1d, 2d, 1e and 2e
Figures S1

\[
\begin{align*}
\text{Br} & \quad \text{O} \\
& \quad \text{R} \\
& \quad \text{COOCH}_2\text{Ph} \\
& \quad \text{H} \\
& \quad \text{O} \\
& \quad \text{Br}
\end{align*}
\]

\[R = \text{CH}_2\text{Ph}\]

Figures S2

\[
\begin{align*}
\text{Br} & \quad \text{O} \\
& \quad \text{R} \\
& \quad \text{COOCH}_2\text{Ph} \\
& \quad \text{H} \\
& \quad \text{Br}
\end{align*}
\]

\[R = \text{CH}_2\text{Ph}\]
Figures S3

\[
\begin{align*}
\text{R} & = \text{CH(CH}_3\text{)}_2 \\
\text{Br} & \text{-} \text{COOCH}_2\text{Ph} \\
\text{N} & \text{COOCH}_2\text{Ph}
\end{align*}
\]

Figures S4

\[
\begin{align*}
\text{R} & = \text{CH(CH}_3\text{)}_2 \\
\text{Br} & \text{-} \text{COOCH}_2\text{Ph} \\
\text{N} & \text{COOCH}_2\text{Ph}
\end{align*}
\]
Figures S7

Figures S8
Figures S11

Figures S12
Figures S15

Figures S16
Figures S23

Figures S24
Figures S27

![Image of chemical structure 7]

Figures S28

![Image of chemical structure 7]
Figures S33

Figures S34
Figures S35

Figures S36
Figures S37

4e

Figures S38

4e
Figures S39

Figures S40
Figures S41

Figures S42
Thermal Isomerization Kinetics of 10 at 20 °C

T = 0

\[y = 0.00538 \times r = 0.999 \]

Compound 1a

T = 60 min

\[\ln \left(\frac{a}{a-x} \right) \]

Time in min

Figures S44

Figures S45

T = 180 min

Figures S46

T = 1800 min

Figures S47

\[\text{y = 0.00538 x} \quad r = 0.999 \]

Compound 1a

Figure S47a
Thermal Isomerization Kinetics of 2a at 20 °C

T = 0

Figures S48

T = 90 min

Figures S49

T = 240 min

Figures S50

T = 300 min

Figures S51

T = 660 min

Figures S52

T = 960 min

Figures S53
Thermal Isomerization Kinetics of 2b at 20 °C

T = 0

T = 50 min

T = 180 min

T = 300 min

T = 450 min

T = 550 min

T = 900 min

Figures S54

Figures S55

Figures S56

Figures S57

Figures S58

Figures S59

Figures S60

Figures S61
Thermal Isomerization Kinetics of 2c at 20 °C

Figures S62

T = 0

Figures S63

T = 45 min

Figures S64

T = 150 min

Figures S65

T = 290 min

Figures S66

T = 350 min

Figures S67

T = 500 min

Figures S68

\[y = 1.6 \times 10^{-3} \times 0.9972 \]
Bergman Cyclization Kinetics of 1a at 45 °C

\[
y = 0.00382x \quad R = 0.9957
\]
Bergman Cyclization Kinetics of aliphatic 1c at 30 °C

T = 0 h

Figures S76

T = 24 h

Figures S77

T = 30.5 h

Figures S78

T = 34 h

Figures S79

T = 41 h

Figures S80

Figures S81

\[y = 0.0327x \quad R = 0.9947 \]

Compounds 2e
DNA binding study of compound 2a by UV

Figures S82
DNA binding study of compound 1a by UV

Figures 83
DNA-Binding Plots

Figure S84: For 1a

Figure S85: For 2a

Figure S86: For 1e

Figure S87: For 2e
DSC of enediynes 1a, 1b, 1c and 1e respectively

Figure S88

Figure S89

Figure S90

Figure S91
Figure S92: NOESY spectrum of enediynes 1a/2a
Figure S93: Energy minimized conformations of 1a (A), 2a (B), 1d (C)/ 2d (D), and 1e (E)/2e (F)
Gel Documentation
The gel documentation was carried with UVP-GELDOC, Cambridge UK. The cleavage efficiency was measured by densitometry using image processing software (Kodak 1D version V.3.6.3).

Energy Minimization
The energy minimizations were carried out in Silicon Graphics using PDB coordinates from the Dundee PRODRG 2.5 Server (beta).

Selected spectral data
For compound 1a: δ_H (400 MHz, CDCl₃) 7.55 (dd, J = 8.4 Hz, 15.6 Hz, 2 x 2H), 7.29-7.16 (m, 12H), 6.99-6.94 (m, 10H), 6.86 (d, J = 8 Hz, 2H), 4.95 (m, 2H), 4.76 (d, J = 13.6 Hz, 2H), 4.66 (d, J = 13.6 Hz, 2H), 4.54 (s, 4H), 4.05 (s, 4H), 3.64 (bs, 4H), 3.18 (d, J = 4 Hz, 2H), 2.89 (dd, J = 8, 13.6 Hz, 2H), 2.80 (bs, 4H); δ_C (100 MHz, CDCl₃) 170.5, 168.0, 165.7, 154.9, 142.6, 135.8, 132.6, 129.7, 129.1, 129.03, 128.5, 128.3, 128.1, 127.9, 127.6, 127.5, 127.3, 126.8, 122.7, 117.8, 115.2, 98.1, 92.4, 88.0, 82.5, 68.9, 61.9, 52.8, 51.2, 40.8, 37.8, 18.2; HRMS: calcd for C₆₄H₅₄N₆O₁₀ + H⁺ 1067.3983 found 1067.3987.

For compound 2a: δ_H (400 MHz, CDCl₃) 7.38-7.08 (m, 22H), 6.79 (t, J = 7.6 Hz, 2H), 6.66 (d, J = 8.4 Hz, 2H), 6.51 (d, J = 8 Hz, 2H), 4.89, 4.83 (ABq, J = 16.0 Hz, 2 x 2H), 4.71 (m, 2H), 4.48, 4.38 (ABq, J = 16.0 Hz, 2 x 2H), 4.16 (m, 4H), 3.75 (bm, 4H), 3.35 (m, 2H), 3.01 (m, 2H), 2.94 (bm, 4H).

For compound 1c: δ_H (400 MHz, CDCl₃) 7.67 (t, J = 7.6 Hz, 2H), 7.61 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.28-6.99 (m, 14H), 5.89, 5.81 (Abq, J = 9.6 Hz, 2 x 2H), 5.04 (2H, m), 4.84 (2H, m), 4.76, 4.73 (ABq, J = 12.6 Hz, 2 x 2H), 4.75 (m, obscured, 2H), 4.11 (s, 4H), 3.75 (bs, 4H), 3.29 (dd, J = 4.8, 14.0 Hz, 2H), 2.99 (dd, J = 4.0, 14.0 Hz, 2H), 2.86 (bs, 4H); δ_C (100 MHz, CDCl₃) 170.5, 168.0, 165.7, 155.0, 142.7, 135.7, 132.6, 129.1, 129.0, 128.5, 128.3, 126.8, 125.5, 122.7, 121.5, 117.9, 115.3, 102.7, 95.9, 88.4, 82.7, 69.0, 61.7, 52.8, 51.3, 40.8, 37.7, 18.4; HRMS: calcd for C₅₆H₅₀N₆O₁₀ + H⁺ 967.3669 found 967.3673.

For compound 2c: δ_H (400 MHz, CDCl₃) 7.22-6.99 (m, 14H), 6.82 (t, J = 7.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 7.6 Hz, 2H), 5.90, 5.82 (Abq, J = 9.2 Hz, 4H), 4.87 (m, 2H), 4.84,
4.77 (ABq, J = 14.2 Hz, 4H), 4.50, 4.37 (ABq, J = 14.8 Hz, 4H), 4.12 (m, 4H), 3.70 (m, 4H),
3.37 (dd, J = 4.4, 14.4 Hz, 2H), 3.03 (dd, J = 8.8, 14.0 Hz, 2H), 2.88 (m, 4H).

For compound 2i: δH (400 MHz, CDCl3) 7.66 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H),
7.38-7.21 (m, 12H), 7.15-7.0 (m, 10H), 6.94 (d, J = 8.0 Hz, 2H), 5.04 (m, 2H), 4.82, 4.75
(ABq, J = 14.4 Hz, 2H), 4.64 (s, 4H), 4.36 (s, 4H), 3.73 (t, J = 4.6 Hz, 4H), 3.26 (dd, J = 5.4,
14.4 Hz, 2H), 3.01-2.9 (m, 2H), 2.89 (t, J = 4.8 Hz, 4H); δC (100 MHz, CDCl3) 170.6, 168.1,
165.8, 155.0, 142.7, 135.8, 132.6, 129.8, 129.1, 129, 128.5, 128.4, 128.3, 128.2, 127.9, 127.8,
127.5, 127.4, 126.8, 122.8, 117.8, 115.3, 98.1, 92.4, 88, 82.5, 68.9, 61.9, 52.8, 51.3, 40.9, 37.8,
18.2; MS (ES+) m/z 1067 (MH+), 1089 (MNa+); HRMS Calcd. For C62H54N6O10 + H+ 1067.3982 found 1067.3969.

For compound 2j: δH (400 MHz, CDCl3) 7.40-7.21 (m, 10H), 7.15-7.03 (m, 10H), 6.79 (t, J =
7.6 Hz, 2H), 6.87 (d, J = 8.4 Hz, 2H), 6.51 (d, J = 7.6 Hz, 2H), 4.95-4.80 (m, 6H), 4.47 (d, J =
15.6 Hz, 2H), 4.32 (d, J = 15.6 Hz, 4H), 4.18 (s, 4H), 3.75 (m, 4H), 3.38 (dd, J = 4.4, 14.0 Hz,
2H), 3.05 (dd, J = 5.2, 14.0 Hz, 2H), 2.92 (m, 4H).