Electronic Supplementary Information

Amylose-wrapped luminescent conjugated polymers

Michael J. Frampton, Timothy D. W. Claridge, Gianluca Latini, Sergio Brovelli, Franco Cacialli* and Harry L. Anderson*

Department of Chemistry, Chemistry Research Laboratory, University 12 Mansfield Road, Oxford, OX1 3TA (UK) harry.anderson@chem.ox.ac.uk and Department of Physics and Astronomy and London Centre for Nanotechnology, University College London, Gower Street, London, WC1E 6BT (UK).

f.cacialli@ucl.ac.uk

Contents

1.	Details of NMR assignments	1
2.	UV-visible and luminescence titrations	2
3.	Thin-film photoluminescence data	3
4.	Preparation of complexes for thin-film characterisation	4

1. Details of NMR assignments

Figure 1 (a) ${}^{1}\text{H}{}^{-13}\text{C}$ HSQC and (b) ${}^{1}\text{H}{}^{-1}\text{H}$ COSY NMR spectra of amylose (MW = 15,000; TCI Europe) in 1:4 DMSO/water showing assignments for the amylose C-H protons (500 MHz, 298 K).

Figure 2¹H NOESY NMR spectrum of a 1:1 PDV⊂Am complex in 1:4 DMSO/water solution (500 MHz, 289 K).

2. UV-visible and luminescence titrations

Figure 3 (a) Effect of increasing amylose concentration on the UV-visible spectrum of PPP in 20 % DMSO aqueous solution. The inset shows the data fitted to a simple 1:1 binding isotherm with $K = 2.4 (\pm 0.6) \times 10^7 \text{ M}^{-1}$ and [PPP] = $5.4 \times 10^{-7} \text{ M}$. (b) Effect of increasing amylose concentration on the fluorescence spectrum of PPP in 10 % DMSO aqueous solution ($\lambda_{ex} = 330 \text{ nm}$).

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

3. Thin-film photoluminescence data

Figure 4 Effect of increasing amylose concentration on the UV-visible spectrum of PDV $\subset\beta$ -CD in 20 % DMSO aqueous solution. The inset shows the data fitted to a simple 1:1 binding isotherm with $K = 1.2 (\pm 0.7) \times 10^7 \text{ M}^{-1}$ and [PDV $\subset\beta$ -CD] = 6.6 × 10⁻⁷ M.

1.0 (a) (b) 1.0 10 . Intensity Fluorescence Intensity 0.8 Absorbance 0.6 -luorescence 0.4 0.4 0.2 0.2 0 -0 2 300 400 500 600 700 800 10 Ò 8 12 4 6 λ/nm time/ns

Figure 5 (a) Normalised thin-film UV-visible absorption and photoluminescence spectra (b) photoluminescence time decay of PDV (\Box), PDV \subset Am (\bullet) and PDV $\subset \beta$ -CD (\triangle).

3

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2008

Figure 6 Time-resolved luminescence spectra for PDV, PDVCAm and PPPCAm.

4. Preparation of complexes for thin-film characterisation

PDVCAm: A solution of amylose (120 mg, MW = 15,000, TCI Europe) in DMSO (3 cm³) was added to a solution of PDV (60 mg) in DMSO (3 cm³). The solution was stirred for 5 min, then diluted with water (36 cm³). The solution was dialysed against pure water (12,000 MWCO cellulose seamless membrane) to remove DMSO, replacing the water three times at daily intervals. The solution was concentrated to a concentration of 15 mg cm⁻³ by stirring under vacuum at 50 °C and filtered through a 0.45 µm nylon filter.

PPPCAm: A solution of amylose (120 mg, MW = 15,000, TCI Europe) in DMSO was added to a solution of PPP (60 mg) in water/DMSO 1:2 (9 cm³). The solution was stirred for 10 min then diluted with water (100 cm³). The solution was dialysed against pure water (12,000 MWCO cellulose seamless membrane) to remove DMSO, replacing the water three times at daily intervals. The solution was concentrated to a concentration of 15 mg cm⁻³ by stirring under vacuum at 50 °C and filtered through a 0.45 µm nylon filter.