Supporting Information

Stepwise Elongation Effect on Two-photon Absorption of Self-assembled Butadiyne Porphyrins

Joanne Dy, a Kazuya Ogawa, *a Kenji Kamada, b Koji Ohta, b and Yoshiaki Kobuke* a

Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

Email: kobuke@ms.naist.jp, oga@ms.naist.jp

Contents

Detailed procedures of synthesis and characterization.

Figure S1. Analytical GPC of TT (green), TDT (blue), and TDDT (orange) using a JAIGEL 3H-A column with CHCl₃ as the eluent, flow rate = 1.2 mL/min.

Figure S2. ¹H-NMR spectra of TT, TDT, and TDDT in CDCl₃ at r.t., 600 MHz.

Figure S3. HHCOSY spectrum of TDDT in CDCl₃ at r.t., 600 MHz.

Figure S4. Excitation Spectrum of TDDT in CHCl₃ monitored at 740 nm.
Detailed procedures of synthesis and characterization.

Preparation (Reorganization) of (D)₂ and (T)ₙ and Isolation of the different length oligomers. T’ (30 mg, 22.3 μmol) and D’ (72 mg, 44.6 μmol) were dissolved in 400 mL of pyridine for dissociation. After 1 h, pyridine was completely removed and the porphyrins were dissolved in CHCl₃ for reorganization during which different oligomers (TDₙT)’, i.e. n = 0, 1, 2, 3…, are formed. The target products (TDT)’ and (TDDT)’ were roughly separated by preparative GPC (JAIGEL 3H, eluent: CHCl₃, flow rate: 3.5 mL/min). Analytical GPC peaks (JAIGEL 3H-A, eluent: CHCl₃, flow rate: 1.2 mL/min): 13.032 (TT)’, 12.506 (TDT)’, 12.071 (TDDT)’, 11.716 (TDDDT)’.

Olefin Metathesis Reaction for Covalent Linkage of (TDDT)’. (TDDT)’ (5 mg, 0.87 μmol) containing a small amount of (TDT)’ and (TDDDT)’ was dissolved in 2 mL of CHCl₃. Grubbs catalyst (RuCl₂(PPh₃), 0.29 mg, 0.35 μmol) was added for metathesis. After 4 h, water was added to terminate the reaction and the target material was extracted with CHCl₃. The organic layers were washed with water and brine and dried over anhydrous Na₂SO₄. Preparative GPC (JAIGEL 3H, eluent: CHCl₃, flow rate: 3.5 mL/min) was performed for further purification/isolation of TDDT. UV-vis (λ_abs, CHCl₃): 434, 462, 497, 571, 622, 670, 733 nm. Fluorescence (λ_em, λ_ex = 434 nm, CHCl₃): 740, 822 nm. MS (MALDI-TOF Mass, dithranol); Found m/z = 5744.00 [M + H⁺], calcd exact mass for C₂₄₄H₂₉₀N₂₈O₃₆Zn₄: 5742.76. Analytical GPC peak (JAIGEL 3H-A, eluent: CHCl₃, flow rate: 1.2 mL/min): 12.97 mins.

In ¹H-NMR, split signals due to isomers with respect to two internal olefin moieties were observed in a ca. 1:3 ratio. Asterisk (*) and prime (’) indicate signals of major and minor isomers, respectively. No mark indicates that peaks of the isomers (trans-trans, cis-trans, cis-cis) are overlapped. δ_H (600 MHz, CDCl₃; Me₄Si) 10.32 (trans and cis, 8H, m, Por β), 9.84 (trans and cis, 8H, m, Por β), 9.59 (trans and cis, 8H, m, Por β), 9.38* (trans-trans, 54% × 2H, s, Ph-4), 9.35′ (cis-trans, 40% × 2H, s, Ph-4), 9.33′ (cis-cis, 6% × 2H, s, Ph-4), 9.14-9.01 (trans and cis, 16H, m, Por β), 8.93 (trans and cis, 8H, m, Por β), 8.74 (2H, m, Ph-2,6), 8.58′ (cis-cis, 6% × 2H, s, Ph-2,6), 8.54′ (cis-trans, 40% × 2H, s, Ph-2,6), 8.50*
(trans-trans, 54% × 2H, s, Ph-2,6), 7.15‘ (cis-cis, 6% × 2H, s, CONH), 7.11‘ (cis-trans, 40% × 2H, s, CONH), 7.08‘ (trans-trans, 54% × 2H, s, CONH), 6.53* (trans, 78% × 12H, two s, -CH=), 6.17‘ (cis, 22% × 12H, two s, -CH=), 5.70-5.40 (28H, m, imidazole-H9 (6H), Por β (12H), Por-CH2‘-(40% × 24H)), 5.40-5.05* (60% × 24H, broad, Por-CH2), 4.80-4.70‘ (cis, 23% × 24H, two broad, -OCH2CH=), 4.55-4.40* (trans, 77% × 24H, m, -OCH2CH=), 4.35-4.20 (24H, m, Por-(CH2)2CH2-), 3.50-2.94 (24H, broad m, Por-CH2CH2-), 2.55-2.20 (54H, m, amide ester -CH2CH2-(48H), imidazole-H4 (6H)), 1.83-1.73 (trans and cis, 18H, m, NCH3), 1.54 (54H, broad s, tBu), 1.24-1.20 (trans and cis, 54H, three s*, tBu). *indicates that doublet or singlet peaks overlap which makes the integration ratio difficult to determine. Approximately, the ratio is 1:6:8. All of these doublet peaks have a coupling constant of $J = 4.2$ Hz.

Two-photon absorption cross-section measurement using an open aperture z-scan technique.

The effective 2PA cross section $\sigma^{(2)}$ of TDT and TDDT in toluene from 840-940 nm was determined by an open aperture z-scan method6 with femtosecond pulses generated by an optical parametric amplifier (SpectraPhysics OPA-800) operating at 1 kHz pumped by a Ti:sapphire regenerative amplifier system (SpectraPhysics Spitfire, Merlin, Tsunami, and Millenia). The optical set-up used for the z-scan measurements is similar to previously reported methods.2 The laser intensities were attenuated using filters to give on-axis peak intensities ranging from 0.2 to 2.2×10^{15} W/m2. The repetition rate was reduced from 1 kHz to 10 Hz using a mechanical chopper for all measurements. The samples were placed in a 1 mm quartz cuvette and scanned at a range of 60 mm around the focal point.

The curve fits were performed according to the theoretical expression for the transmittance.2

\[
T(\zeta) = \frac{(1 - R)^2 e^{-\alpha^{(1)}L}}{\sqrt{\pi q(\zeta)}} \int_{-\infty}^{\infty} \ln[1 + q(\zeta)e^{-x^2}] dx \quad (1)
\]

\[
q(\zeta) = \frac{q_0}{1 + \zeta^2} \quad (2)
\]

\[
q_0 = \alpha^{(2)}(1-R)I_0 L_{eff} \quad (3)
\]

\[
L_{eff} = \frac{[1-\exp(-\alpha^{(1)}L)]/\alpha^{(1)}} \quad (4)
\]
\[\sigma^{(2)} = \hbar \omega \alpha^{(2)} / N \] \hspace{1cm} (5)

where \(\zeta \) is the normalized z-position \(\left(\zeta = (z-z_0)/z_R \right) \), and \(z_0 \) and \(z_R \) are the focal position and the Rayleigh range, respectively. \(q_0 \) is the two-photon absorbance, \(\alpha^{(1)} \) is the one-photon absorption coefficient, \(R \) denotes the Fresnel reflectance, and \(L \) is the path length (1 mm). \(\alpha^{(2)} \) is the 2PA coefficient, \(L_{\text{eff}} \) denotes the effective path length, and \(I_0 \) is the peak intensity at the focal position. \(N \) is the number density of the solute molecules and \(\hbar \omega \) is the photon energy of the incident light. Finally, the \(\sigma^{(2)} \) value was estimated from equation (5).
Figure S1. Analytical GPC elution curve of TT (green), TDT (blue), and TDDT (orange) using a JAIGEL 3H-A column with CHCl$_3$ as the eluent, flow rate = 1.2 mL/min.
The 3 types of environments experienced by the allylic and imidazolyl protons can be divided into these 3 categories:

<table>
<thead>
<tr>
<th></th>
<th>TT</th>
<th>TDT</th>
<th>TDDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>X</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
<tr>
<td>X</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
</tr>
</tbody>
</table>

Figure S2. 1H-NMR spectra of TT, TDT, and TDDT in CDCl$_3$ at r.t., 600 MHz.
Figure S3. HHCOSY spectrum of TDDT in CDCl$_3$ at r.t., 600 MHz.
Figure S4. Excitation Spectrum of TDDT in CHCl₃ monitored at 740 nm.

References:
