Supplementary Material

A new and specific mode of stabilization of metallic nanoparticles

Isabelle Favier, Stéphane Massou, Emmanuelle Teuma, Karine Philippot, Bruno Chaudret and Montserrat Gómez

Laboratoire Hétérochimie Fondamentale et Appliquée, UMR 5069 CNRS, Université Paul Sabatier 118 route de Narbonne 31062 Toulouse cedex 9, France. Fax: +33 561558204; Tel: +33 561557738; E-mail: gomez@chimie.ups-tlse.fr

b Laboratoire d’Ingénierie des Systèmes Biologiques et des Procédés, UMR, INSA/CNRS 5504/INRA 792, 135 Avenue de Rangueil, 31077 Toulouse Cedex 4, France.

c Laboratoire de Chimie de Coordination C.N.R.S., 205 Route de Narbonne, 31077 Toulouse France. Fax: +33 05 61 33 31 81; chaudret@lcc-toulouse.fr

Fig. S1 TEM micrograph of RuNPs stabilized by pyridine.

Fig. S2 13C CPMAS NMR (100.5 MHz, 292 K) spectrum of RuL.

Fig. S3 2H MAS NMR spectra (61.3 MHz, 291 K) of preformed RuL exposed under D$_2$ (3 bars) (top), followed by vacuum treatment (down).

Fig. S4 1H NMR spectra (aromatic region, 500 MHz, THF-d$_8$, 298 K) corresponding to the 4-(3-phenylpropyl)pyridine/dodecanethiol exchange monitoring for RuL. Up: Signal at ca. 8.5 ppm corresponds to pyridinyl ortho protons; down: signals at 7.2-7.4 ppm correspond to the other aromatic protons.

Fig. S5 TEM micrographs (with the corresponding size distribution) corresponding to the monitoring of RuL formation (at 7, 22 and 35 minutes).
Fig. S1 TEM micrograph of RuNPs stabilized by pyridine.

Fig. S2 13C CPMAS NMR (100.5 MHz, 292 K) spectrum of RuL.
Fig. S3 2H MAS NMR spectra (61.3 MHz, 291 K) of preformed RuL exposed under D$_2$ (3 bars) (top), followed by vacuum treatment (down).
Fig. S4 1H NMR spectra (aromatic region, 500 MHz, THF-d$_8$, 298 K) corresponding to the 4-(3-phenylpropyl)pyridine/dodecanethiol exchange monitoring for RuL. Up: Signal at ca. 8.5 ppm corresponds to pyridinyl ortho protons; down: signals at 7.2-7.4 ppm correspond to the other aromatic protons.
Fig. S5 TEM micrographs (with the corresponding size distribution) corresponding to the monitoring of RuL formation (at 7, 22 and 35 minutes).