Supplementary Information

Highly enantioselective organocatalytic formation of quaternary carbon center via chiral Brønsted acid catalyzed self-coupling of enamides

Christine Baudequin, Alexandru Zamfir and Svetlana B. Tsogoeva*

Institut für Organische Chemie, Friedrich-Alexander Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen, Germany

General: All solvents were purified by standard procedures and distilled prior to use. Reagents obtained from commercial sources were used without further purification. TLC chromatography was performed on precoated aluminium silica gel SIL G/UV254 plates (Marcherey, Nagel & Co.) or silica gel 60-F254 precoated glass plates (Merck). ¹H NMR spectra were recorded with a Varian Unity 300. ESI mass spectra were recorded with a LCQ Finnigan spectrometer. High-resolution mass spectra were measured with a Bruker APEX IV 7T FT-ICR instrument. A Perkin-Elmer 241 polarimeter was used for optical rotation measurements.

Synthesis of enamides:

Enamides used for Table 2, entries 1, 2, 5, 6 and 7 were synthesized via reaction 1, according to the literature known procedure.¹

Enamides used for Table 2, entries 3 and 4 were synthesized via reaction 2, according to the literature known procedure.²

¹ M. J. Burk, Y. M. Wang, J. R. Lee, *J. Am. Chem. Soc.*, **1996**, *118*, 5142–5143.
 ² C. G. Savarin, G. N. Boice, J. A. Murry, E. Corley, L. DiMichele, D. Hughes, *Org. Lett.*, **2006**, *8*, 3903-3906.

General procedure for the self-coupling reaction of enamides

To a 10 mL argon flushed two-neck round bottom flask the enamide (0.158 mmol), the catalyst (0.1 eq) and 1.5 mL toluene was added. The mixture was allowed to stir for 3 days at room temperature. The reaction was quenched with a saturated NaHCO₃ solution and the aqueous phase was extracted 3 times with dichloromethane. The combined organic layers were dried over MgSO₄, and the solvent was removed under reduced pressure at 40°C. The product was purified by flash chromatography (*n*-Hexane/EA 1:1).

ESI-MS: $m/z = 212 [M + Na]^+$, 401 $[2M + Na]^+$.

¹H-NMR (300 MHz, CDCl₃):

DCI-MS: $m/z = 196.1 [M + H]^+$, 213.2 $[M + NH_4]^+$, 391.3 $[2M + H]^+$, 408.3 $[2M + NH_4]^+$.

¹H-NMR (300 MHz, CDCl₃):

ESI-MS: $m/z = 413 [M + Na]^+$, 805 $[2M + Na]^+$.

HPLC Analysis

Table 2, entry 1: racemic product

HPLC Diacel Chiralcel OD

Control method: 90-10-1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, $\lambda = 254$ nm

	Name	Rt	Ar	ea	%Area
1	Peak 1	16,40	83866	45,500	50,278
2	Peak 2	23,04	82940	50,500	49,722
	Total	Area of Pe	eak = 16680	696.00	
1.2E+05 μ	V				UV2_CHIR
	Peak	1			rac
1.0E+05 -	\wedge			_	
8.0E+04 -			Peak 2		/

Chiral product

HPLC Diacel Chiralcel OD Control method: 90_10_1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, $\lambda = 254$ nm

	Name	Rt	Area	%Area
1	Peak 1	15,98	42095075,25	98,75
2	Peak 2	23,33	532945,50	1,25

Total Area of Peak = 42628020.75

Table 2, entry 3: racemic product

HPLC Diacel Chiralcel OD

Control method: 95_5_1M

n-hexane / 2-propanol = 95 : 5, flow rate 1 mL/min, $\lambda = 210$ nm

	Name	Rt	Area	%Area			
1	Peak 1	38,61	13892937,76	50,28			
2	Peak 2	52,99	13740184,49	49,72			
Total Area of Peak = 27633122.25							

Chiral product HPLC Diacel Chiralcel OD

Control method: 95_5_1M

n-hexane / 2-propanol = 95 : 5, flow rate 1 mL/min, $\lambda = 210$ nm

	Name	Rt	Area	%Area		
1	Peak 1	38,21	9851722,75	94,16		
2	Peak 2	54,64	610579,25	5,84		
$\frac{2}{1000} = 1000000000000000000000000000000000000$						

Table 2, entry 4: racemic product

HPLC Diacel Chiralcel OD

Control method: 95_5_1M

n-hexane / 2-propanol = 95 : 5, flow rate 1 mL/min, λ = 254 nm

	Name	Rt	Area	%Area
1	Peak 1	33,48	10626177,50	50,51
2	Peak 2	41,19	10409748,50	49,49
	Total	Area of Pe	eak = 21035926.00	
	10141	Alca of I	21033720.00	
1				

Chiral product

HPLC Diacel Chiralcel OD Control method: 95_5_1M

 $[\alpha]_{D}^{25} = -365; c = 0.1, CH_2Cl_2$

Table 2, entry 5: racemic product

HPLC Diacel Chiralcel OD Control method: 90_10_1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, $\lambda = 210$ nm

Chiral product

HPLC Diacel Chiralcel OD Control method: 90_10_1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, $\lambda = 210$ nm

	Name	Rt	Area	%Area
1	Peak 1	36,40	1151145,00	6,02
2	Peak 2	42,19	17980090,75	93,98

Total Area of Peak = 19131235.75

Table 2, entry 6: racemic product

HPLC Diacel Chiralcel OD Control method: 90_10_1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, $\lambda = 254$ nm

Chiral product

HPLC Diacel Chiralcel OD Control method: 90_10_1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, $\lambda = 254$ nm

Table 2, entry 7: racemic productHPLC Diacel Chiralcel OD

Control method: 90_10_1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, λ =254 nm

Chiral product

HPLC Diacel Chiralcel OD Control method: 90-10-1M

n-hexane / 2-propanol = 90 : 10, flow rate 1 mL/min, λ =254 nm

Table 2, entry 8: racemic product

HPLC Diacel Chiralpak IA Control method: 97_3_1M

n-hexane / 2-propanol = 97 : 3, flow rate 1 mL/min, $\lambda = 254$ nm

Chiral product

HPLC Diacel Chiralpak IA Control method: 97_3_1M

n-hexane / 2-propanol = 97 : 3, flow rate 1 mL/min, $\lambda = 254$ nm

Conversion to β -aminoketone with the quaternary carbon center bonded to nitrogen:

Experimental procedure:

The product of the self-coupling reaction (30 mg, 0.07672 mmol) was dissolved in 1.5 mL THF. 2 mL of 2N HCl was added and the reaction mixture was refluxed for 18 h, followed by neutralization with a saturated NaHCO₃ solution and extraction with dichloromethane (3 times). The combined organic layers were dried over MgSO₄, and the solvent was removed under reduced pressure at 40°C. The product was purified by flash chromatography (Petrolether/EA 1:1). Yield: 95%, $[\alpha]_D^{25} = -22$; c = 0.1, CH₂Cl₂.

¹H NMR (300 MHz, CDCl₃) δ = 1.82 (s, 3H, CH₃), 1.97 (s, 3H, CH₃), 3.39 (d, 1H, *J* = 16 Hz), 3.76 (d, 1H, *J* = 16 Hz) (diastereotopic CH₂ protons), 6.79 (br.s, 1H, NH), 7.23-7.26 (m, 4H, H_{arom}), 7.35-7.39 (m, 2H, H_{arom}), 7.73-7.76 (m, 2H) ppm.

¹³C NMR (150.8 MHz, CDCl₃) δ = 24.65 (CH₃), 27.78 (CH₃), 47.37 (CH₂), 57.81 (CN), 126.55, 129.12, 129.42, 130.03, 133.10, 135.88, 140.65, 144.27, 170.15 (C=O, amide), 198.44 (C=O) ppm.

MALDI-TOF-MS : $m/z = 350 [M]^+$, 373 [M+Na]⁺, 389 [M+K]⁺.

HPLC Diacel Chiralpak IA Control method: 85-15-1M

n-hexane / 2-propanol = 85 : 15, flow rate 1 mL/min, $\lambda = 254$ nm

	Name	Rt	Area	%Area
1	Peak 1	9,675	4039,9	50.082
2	Peak 2	12,081	4026,6	49,918

Total Area	of Peak =	8066,5
------------	-----------	--------

HPLC Diacel Chiralpak IA Control method: 85-15-1M

n-hexane / 2-propanol = 85 : 15, flow rate 1 mL/min, $\lambda = 254$ nm

	Name	Rt	Area	%Area
1	Peak 1	9,629	3246,3	98,886
2	Peak 2	12,056	36,6	1,114

Total Area o	of Peak =	3282,9
--------------	-----------	--------

