Temporal and Spatial Imaging of Hydrogen Storage Materials: Watching Solvent and Hydrogen Desorption from Aluminium Hydride by Transmission Electron Microscopy[†]

Shane D. Beattie^{*,a}, **Terry Humphries**^a, **Louise Weaver**, ^b and G. Sean McGrady ^{*,a} ^aDepartment of Chemistry, University of New Brunswick, 30 Dineen Drive, Fredericton, NB, E3B 6E2, Canada ^bMicroscopy and Microanalysis Facility, University of New Brunswick, 10 Bailey Dr. Fredericton, NB, E3B 5A3, Canada ^{*} corresponding authors: <u>sbeattie@unb.ca</u>; <u>smcgrady@unb.ca</u>

Synthesis of α-AlH₃

The original synthesis of pure alane was reported by Brower et al. in 1976 from the reaction between $LiAlH_4$ and $AlCl_3$ in ether, forming an alane-etherate. This complex can then be desolvated to produce at least six polymorphs.¹

 $3\text{LiAlH}_4 + \text{AlCl}_3 \rightarrow 4\text{AlH}_3 + 3\text{LiCl}_4$

Since this preparation was reported, many papers reference samples produced by the Dow Chemical Co. in the 1970's. Graetz and Reilly published a synthesis for α -AlH₃ in 2005,² which follows the original method of Brower et al.

Reagents

All reagents and solvents were handled and stored under inert conditions (N₂ or Ar), employing Schlenk vessels and/or dry boxes to avoid contact with moisture and air. The AlCl₃ used was *ReagentPlus*[®], anhydrous, granular, \geq 99.9% (Sigma-Aldrich). The LiAlH₄ was reagent grade, 95%, powder (Aldrich); this was purified by dissolution in and recrystallisation from ether (Et2O). The Et2O was dried using a Grubbs solvent system, then sparged with Ar gas and stored in a Schlenk vessel prior to use.

Procedure

AlCl₃ (2.66g; 20 mmol) is dissolved in Et₂O (100 mL), and this solution is added to a solution of LiAlH₄ (3.04g; 80 mmol) in Et₂O (300 mL). The resulting mixture is stirred for several minutes. The LiAlH₄ may not always dissolve completely. A light grey precipitate of LiCl starts to appear soon after mixing the two solutions. This is removed by filtration, along with remaining LiAlH₄. The Et₂O is then removed in vacuo to leave AlH₃.nEt₂O as a white solid. This is ground to a fine powder and baked in vacuo at 70 °C for 6 hours. Care must be taken at this stage to prevent the fine powder being sucked from the vessel. The resulting light grey powder is then washed with Et₂O and dried in vacuo, leaving ca. 2.5 g of α -AlH₃.

SADP Ring Measurements:

Although the ring measurements do not match the theoretical values exactly, they are all within $\sim 2\%$ of these values. It is extremely difficult to locate the exact centre of the SADP, hence there is an unavoidable experimental error associated with measuring the ring distances.

Figure 2 Ring Measurements

Ring Radius (Å)	AI (Å)
2.317	2.338
1.986	2.024
1.492	1.431
1.211	1.221

Figure 3 Ring Measurements

Ring Radius (Å)	AI (Å)
2.357	2.338
2.067	2.024
1.454	1.431
1.236	1.221

Figure 4 Ring Measurements

Ring Radius (Å)	AI (Å)	α-AlH₃ (Å)
N/A		5.6
3.202		3.28
2.359	2.338	2.29
2.067	2.024	2.12
1.612		1.635/1.61/1.6/1.57
1.394	1.431	
1.272	1.221	

It is difficult to assign the rings at 2.359 and 2.067 Å to either Al or α -AlH₃. They likely contain contributions from both.

Figure 5 Ring Measurements

Ring Radius (Å)	AI (Å)
2.352	2.338
2.045	2.024
1.460	1.431
1.232	1.221

Figure S1. Proposed intermediate a-AlH₃ phase as identified by SADP

Figure S1- TEM image and SADP (inset) of proposed intermediate α-AlH₃ phase

Figure S1 shows a TEM image of what we believe is the intermediate α -AlH₃ phase corresponding to the process AlH₃.nEt₂O $\rightarrow \alpha$ -AlH₃ \rightarrow Al. The SADP is faint; however there is a ring at 3.211 Å, indicative of the presence of α -AlH₃. There are rings at 2.34 and 1.235 Å, which no doubt correspond to a combination of contributions from both Al and α -AlH₃.

Ring Radius (Å)	AI (Å)	α-AlH₃ (Å)
N/A		5.6
3.211		3.28
2.340	2.338	2.29
Too faint	2.024	2.12
Too faint		1.635/1.61/1.6/1.57
Too faint	1.431	
1.235	1.221	

Figure S1 Ring Measurements

XRD Pattern of synthesised α-AlH₃.

Figure S2 shows the XRD pattern of the as prepared α -AlH₃ sample. The peaks near 21 and 24° arise from the parafilm used to cover the samples and prevent exposure to the atmosphere during XRD measurements. The XRD pattern for parafilm is superimposed

on the α -AlH₃ pattern for comparison (arbitrarily scaled intensity). The unidentified peaks could be from aluminum or other alane phases (e.g.: ξ). The main constituent, however, is α -AlH₃.

References

1. F. M Brower, N. E. Matzek, P. F. Reigler, H. W. Rinn, C. B. Roberts, D. L. Schmidt, J.

A. Snover and K. Terada K. J. Am. Chem. Soc., 1976, 98, 2450.

2. J. Graetz and J. Reilly, J. Phys. Chem., 2005, 109, 22181.