# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2008 data_global _journal_name_full Chem.Commun. _journal_coden_Cambridge 0182 _journal_volume ? _journal_page_first ? _journal_year ? _publ_contact_author_name 'Prof Andrzej Katrusiak' _publ_contact_author_email KATRAN@AMU.EDU.PL _publ_section_title ; Energetics of Conformational Conversion between 1,1,2-Trichloroethane Polymorphs ; loop_ _publ_author_name 'Andrzej Katrusiak' 'Maciej Bujak' 'Marcin Podsiadlo' # Attachment '112TCE_LT_HP_All.cif' data_112TCE_220K _database_code_depnum_ccdc_archive 'CCDC 680544' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2-trichloroethane ; _chemical_name_common 1,1,2-trichloroethane _chemical_melting_point 236.6 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 21/c 1' _symmetry_space_group_name_Hall '-P 2ybc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 5.2875(7) _cell_length_b 8.8172(11) _cell_length_c 11.1861(12) _cell_angle_alpha 90.00 _cell_angle_beta 93.121(10) _cell_angle_gamma 90.00 _cell_volume 520.73(11) _cell_formula_units_Z 4 _cell_measurement_temperature 220.0(1) _cell_measurement_reflns_used 1058 _cell_measurement_theta_min 2.94 _cell_measurement_theta_max 26.35 _exptl_crystal_description irregular _exptl_crystal_colour colourless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.702 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.582 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.635 _exptl_absorpt_correction_T_max 0.728 _exptl_absorpt_process_details ; Correction for absorption was made using XEMP (SHELXTL, Sheldrick (1990)). ; _exptl_special_details ; Data were collected at ambient pressure (100 kPa) and 220 K with the crystal obtained by the in-situ low-temperature crystallization technique. ; # EXPERIMENTAL DATA _diffrn_ambient_temperature 220(2) _diffrn_ambient_pressure 100 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 3086 _diffrn_reflns_av_R_equivalents 0.0426 _diffrn_reflns_av_sigmaI/netI 0.0324 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.94 _diffrn_reflns_theta_max 25.22 _reflns_number_total 939 _reflns_number_gt 808 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0568P)^2^+0.7610P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 939 _refine_ls_number_parameters 65 _refine_ls_number_restraints 62 _refine_ls_R_factor_all 0.0659 _refine_ls_R_factor_gt 0.0547 _refine_ls_wR_factor_ref 0.1386 _refine_ls_wR_factor_gt 0.1286 _refine_ls_goodness_of_fit_ref 1.085 _refine_ls_restrained_S_all 1.059 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.4892(2) 0.33728(15) 0.10875(10) 0.0701(4) Uani 1 1 d . . . Cl2 Cl 0.7793(3) 0.05024(15) 0.11229(11) 0.0871(5) Uani 1 1 d . . . Cl3 Cl 1.0116(2) 0.14602(14) 0.37369(11) 0.0685(4) Uani 1 1 d . . . C11 C 0.7629(11) 0.2373(7) 0.1732(5) 0.0633(13) Uani 0.85 1 d PU A 1 H11 H 0.9162 0.2930 0.1546 0.076 Uiso 0.85 1 calc PR A 1 C21 C 0.7414(11) 0.2366(7) 0.3026(5) 0.0646(13) Uani 0.85 1 d PU A 1 H211 H 0.5888 0.1830 0.3222 0.077 Uiso 0.85 1 d PR A 1 H212 H 0.7295 0.3399 0.3315 0.077 Uiso 0.85 1 d PR A 1 C12 C 0.885(5) 0.207(3) 0.230(3) 0.053(4) Uani 0.15 1 d PU A 2 H12 H 0.9883 0.2865 0.1958 0.064 Uiso 0.15 1 calc PR A 2 C22 C 0.619(6) 0.257(4) 0.246(3) 0.057(5) Uani 0.15 1 d PU A 2 H221 H 0.5175 0.1709 0.2686 0.069 Uiso 0.15 1 d PR A 2 H222 H 0.6171 0.3317 0.3096 0.069 Uiso 0.15 1 d PR A 2 loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0633(7) 0.0815(9) 0.0638(7) 0.0109(6) -0.0142(5) 0.0146(6) Cl2 0.1297(13) 0.0671(8) 0.0651(8) -0.0160(6) 0.0105(8) 0.0138(7) Cl3 0.0627(7) 0.0704(8) 0.0698(7) 0.0128(6) -0.0187(5) 0.0061(5) C11 0.061(3) 0.067(3) 0.062(3) 0.005(3) -0.002(3) 0.006(3) C21 0.063(3) 0.068(3) 0.062(3) -0.005(3) -0.009(3) 0.009(3) C12 0.046(6) 0.061(8) 0.052(7) 0.015(7) -0.006(7) 0.005(6) C22 0.048(7) 0.070(8) 0.054(8) 0.012(7) -0.001(7) 0.005(7) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C11 1.810(6) . ? Cl3 C12 1.78(3) . ? Cl2 C11 1.788(6) . ? Cl2 C12 1.97(3) . ? C11 C21 1.458(8) . ? C12 C22 1.49(4) . ? Cl3 C21 1.785(5) . ? Cl1 C22 1.80(3) . ? C11 H11 0.9800 . ? C21 H211 0.9700 . ? C21 H212 0.9700 . ? C12 H12 0.9800 . ? C22 H221 0.9700 . ? C22 H222 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C11 C21 Cl3 109.9(4) . . ? C12 C22 Cl1 110(2) . . ? C21 C11 Cl1 107.1(4) . . ? C22 C12 Cl3 107(2) . . ? C21 C11 Cl2 112.5(4) . . ? C22 C12 Cl2 93(2) . . ? Cl2 C11 Cl1 110.6(3) . . ? Cl3 C12 Cl2 118.0(16) . . ? C21 C11 H11 108.9 . . ? Cl2 C11 H11 108.9 . . ? Cl1 C11 H11 108.9 . . ? C11 C21 H211 109.7 . . ? Cl3 C21 H211 109.7 . . ? C11 C21 H212 109.7 . . ? Cl3 C21 H212 109.7 . . ? H211 C21 H212 108.2 . . ? C22 C12 H12 112.4 . . ? Cl3 C12 H12 112.4 . . ? Cl2 C12 H12 112.4 . . ? C12 C22 H221 109.8 . . ? Cl1 C22 H221 109.8 . . ? C12 C22 H222 109.6 . . ? Cl1 C22 H222 109.8 . . ? H221 C22 H222 108.3 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag Cl1 C11 C21 Cl3 -177.8(3) . . . . ? Cl3 C12 C22 Cl1 174.4(15) . . . . ? Cl2 C11 C21 Cl3 60.6(5) . . . . ? Cl2 C12 C22 Cl1 -65(2) . . . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 25.22 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.448 _refine_diff_density_min -0.344 _refine_diff_density_rms 0.065 ############################################################################# data_112TCE_100K _database_code_depnum_ccdc_archive 'CCDC 680545' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2-trichloroethane ; _chemical_name_common 1,1,2-trichloroethane _chemical_melting_point 236.6 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 21/c 1' _symmetry_space_group_name_Hall '-P 2ybc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 5.1516(4) _cell_length_b 8.5488(6) _cell_length_c 11.3545(6) _cell_angle_alpha 90.00 _cell_angle_beta 92.602(5) _cell_angle_gamma 90.00 _cell_volume 499.54(6) _cell_formula_units_Z 4 _cell_measurement_temperature 100.(1) _cell_measurement_reflns_used 2334 _cell_measurement_theta_min 2.98 _cell_measurement_theta_max 29.92 _exptl_crystal_description irregular _exptl_crystal_colour colourless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.774 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.649 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.625 _exptl_absorpt_correction_T_max 0.719 _exptl_absorpt_process_details ; Correction for absorption was made using XEMP (SHELXTL, Sheldrick (1990)). ; _exptl_special_details ; Data were collected at ambient pressure (100 kPa) and 100 K with the crystal obtained by the in-situ low-temperature crystallization technique. ; # EXPERIMENTAL DATA _diffrn_ambient_temperature 100(2) _diffrn_ambient_pressure 100 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 3511 _diffrn_reflns_av_R_equivalents 0.0309 _diffrn_reflns_av_sigmaI/netI 0.0198 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -13 _diffrn_reflns_limit_l_max 13 _diffrn_reflns_theta_min 2.98 _diffrn_reflns_theta_max 25.24 _reflns_number_total 904 _reflns_number_gt 868 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0137P)^2^+0.4171P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 904 _refine_ls_number_parameters 46 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0302 _refine_ls_R_factor_gt 0.0287 _refine_ls_wR_factor_ref 0.0554 _refine_ls_wR_factor_gt 0.0547 _refine_ls_goodness_of_fit_ref 1.252 _refine_ls_restrained_S_all 1.252 _refine_ls_shift/su_max 0.001 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.49267(9) 0.34280(6) 0.10816(4) 0.02227(15) Uani 1 1 d . . . Cl2 Cl 0.78319(11) 0.05010(6) 0.11583(5) 0.02666(15) Uani 1 1 d . . . Cl3 Cl 1.00700(9) 0.15071(6) 0.38063(4) 0.02128(15) Uani 1 1 d . . . C1 C 0.7666(4) 0.2426(2) 0.17529(18) 0.0186(4) Uani 1 1 d . . . H11 H 0.9259 0.2995 0.1585 0.022 Uiso 1 1 calc R . . C2 C 0.7327(4) 0.2416(2) 0.30627(17) 0.0196(4) Uani 1 1 d . . . H21 H 0.5757 0.1849 0.3234 0.023 Uiso 1 1 calc R . . H22 H 0.7151 0.3481 0.3343 0.023 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0204(3) 0.0246(3) 0.0214(3) 0.0041(2) -0.00382(19) 0.0048(2) Cl2 0.0382(3) 0.0190(3) 0.0229(3) -0.0049(2) 0.0023(2) 0.0053(2) Cl3 0.0194(3) 0.0216(3) 0.0223(3) 0.00419(19) -0.00515(19) 0.00218(19) C1 0.0165(9) 0.0152(10) 0.0240(10) 0.0016(8) -0.0002(8) 0.0014(8) C2 0.0179(10) 0.0191(10) 0.0215(10) -0.0005(8) -0.0021(8) 0.0034(8) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.791(2) . ? Cl2 C1 1.782(2) . ? C1 C2 1.505(3) . ? Cl3 C2 1.7902(19) . ? C1 H11 0.9800 . ? C2 H21 0.9700 . ? C2 H22 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 C2 Cl3 110.12(14) . . ? C2 C1 Cl1 107.38(14) . . ? C2 C1 Cl2 112.26(14) . . ? Cl2 C1 Cl1 109.31(11) . . ? C1 C2 H21 109.6 . . ? C1 C2 H22 109.6 . . ? C2 C1 H11 109.3 . . ? Cl1 C1 H11 109.3 . . ? Cl2 C1 H11 109.3 . . ? Cl3 C2 H21 109.6 . . ? Cl3 C2 H22 109.6 . . ? H21 C2 H22 108.2 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag Cl1 C1 C2 Cl3 -177.44(10) . . . . ? Cl2 C1 C2 Cl3 62.39(17) . . . . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 25.24 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 0.304 _refine_diff_density_min -0.250 _refine_diff_density_rms 0.059 ############################################################################# data_112TCE_047GPa _database_code_depnum_ccdc_archive 'CCDC 680546' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2-trichloroethane ; _chemical_name_common 1,1,2-trichloroethane _chemical_melting_point 236.6 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 21/c 1' _symmetry_space_group_name_Hall '-P 2ybc' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y-1/2, z-1/2' _cell_length_a 5.2539(19) _cell_length_b 8.698(3) _cell_length_c 10.948(5) _cell_angle_alpha 90.00 _cell_angle_beta 93.01(3) _cell_angle_gamma 90.00 _cell_volume 499.6(3) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 4342 _cell_measurement_theta_min 2.34 _cell_measurement_theta_max 29.29 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.44 _exptl_crystal_size_mid 0.44 _exptl_crystal_size_min 0.25 _exptl_crystal_size_rad 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.773 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.648 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.61 _exptl_absorpt_correction_T_max 0.66 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.47(5) GPa (470000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 470000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2798 _diffrn_reflns_av_R_equivalents 0.0941 _diffrn_reflns_av_sigmaI/netI 0.0285 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -10 _diffrn_reflns_limit_k_max 10 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 2.99 _diffrn_reflns_theta_max 25.23 _reflns_number_total 288 _reflns_number_gt 282 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0716P)^2^+0.5733P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 288 _refine_ls_number_parameters 46 _refine_ls_number_restraints 19 _refine_ls_R_factor_all 0.0572 _refine_ls_R_factor_gt 0.0566 _refine_ls_wR_factor_ref 0.1463 _refine_ls_wR_factor_gt 0.1458 _refine_ls_goodness_of_fit_ref 1.179 _refine_ls_restrained_S_all 1.156 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.4808(5) 0.3344(2) 0.1077(5) 0.083(4) Uani 1 1 d . . . Cl2 Cl 0.7747(7) 0.0435(2) 0.1107(6) 0.103(5) Uani 1 1 d . . . Cl3 Cl 1.0137(5) 0.14215(19) 0.3729(4) 0.077(4) Uani 1 1 d . . . C1 C 0.751(3) 0.2360(11) 0.168(3) 0.088(5) Uani 1 1 d U . . H11 H 0.9020 0.2926 0.1440 0.105 Uiso 1 1 calc R . . C2 C 0.753(3) 0.2366(11) 0.304(3) 0.090(5) Uani 1 1 d U . . H21 H 0.5981 0.1879 0.3295 0.108 Uiso 1 1 calc R . . H22 H 0.7523 0.3422 0.3326 0.108 Uiso 1 1 calc R . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.067(2) 0.0897(14) 0.089(11) 0.0135(16) -0.024(5) 0.0173(9) Cl2 0.143(3) 0.0720(13) 0.092(12) -0.0186(16) -0.006(6) 0.0155(12) Cl3 0.066(2) 0.0753(12) 0.087(9) 0.0146(14) -0.028(4) 0.0052(8) C1 0.081(7) 0.098(5) 0.083(12) 0.020(8) -0.005(8) 0.002(4) C2 0.083(7) 0.103(5) 0.082(12) 0.019(8) -0.018(8) -0.001(4) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.757(10) . ? Cl2 C1 1.794(16) . ? C1 C2 1.49(5) . ? Cl3 C2 1.735(9) . ? C1 H11 0.9800 . ? C2 H21 0.9700 . ? C2 H22 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 C2 Cl3 113(2) . . ? C2 C1 Cl1 110(2) . . ? C2 C1 Cl2 110.8(10) . . ? Cl1 C1 Cl2 113.1(9) . . ? Cl1 C1 H11 107.7 . . ? Cl2 C1 H11 107.7 . . ? Cl3 C2 H21 108.9 . . ? Cl3 C2 H22 108.9 . . ? C1 C2 H21 108.9 . . ? C1 C2 H22 108.9 . . ? C2 C1 H11 107.7 . . ? H21 C2 H22 107.7 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag Cl1 C1 C2 Cl3 -179.9(4) . . . . ? Cl2 C1 C2 Cl3 54.6(15) . . . . ? _diffrn_measured_fraction_theta_max 0.316 _diffrn_reflns_theta_full 25.23 _diffrn_measured_fraction_theta_full 0.316 _refine_diff_density_max 0.156 _refine_diff_density_min -0.131 _refine_diff_density_rms 0.040 ############################################################################# data_112TCE_120GPa _database_code_depnum_ccdc_archive 'CCDC 680547' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2-trichloroethane ; _chemical_name_common 1,1,2-trichloroethane _chemical_melting_point 236.6 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 1 21/n' _symmetry_space_group_name_Hall '-P 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y+1/2, z+1/2' '-x, -y, -z' 'x-1/2, y-1/2, -z-1/2' _cell_length_a 5.0448(11) _cell_length_b 8.3551(18) _cell_length_c 11.006(5) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 94.643(18) _cell_volume 462.4(3) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 3950 _cell_measurement_theta_min 2.44 _cell_measurement_theta_max 29.91 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.44 _exptl_crystal_size_mid 0.44 _exptl_crystal_size_min 0.24 _exptl_crystal_size_rad 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.916 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.781 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.62 _exptl_absorpt_correction_T_max 0.66 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 1.20(5) GPa (1200000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 1200000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2125 _diffrn_reflns_av_R_equivalents 0.1048 _diffrn_reflns_av_sigmaI/netI 0.0888 _diffrn_reflns_limit_h_min -6 _diffrn_reflns_limit_h_max 6 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 9 _diffrn_reflns_limit_l_min -3 _diffrn_reflns_limit_l_max 3 _diffrn_reflns_theta_min 4.46 _diffrn_reflns_theta_max 25.24 _reflns_number_total 231 _reflns_number_gt 131 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0673P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 231 _refine_ls_number_parameters 46 _refine_ls_number_restraints 12 _refine_ls_R_factor_all 0.0762 _refine_ls_R_factor_gt 0.0488 _refine_ls_wR_factor_ref 0.1028 _refine_ls_wR_factor_gt 0.0991 _refine_ls_goodness_of_fit_ref 0.988 _refine_ls_restrained_S_all 0.958 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.752(4) 0.241(2) 0.172(6) 0.038(8) Uani 1 1 d U . . H11 H 0.9109 0.3049 0.1432 0.046 Uiso 1 1 calc R . . C2 C 0.755(3) 0.2547(17) 0.288(5) 0.028(8) Uani 1 1 d U . . H21 H 0.7560 0.3678 0.3085 0.033 Uiso 1 1 calc R . . H22 H 0.9197 0.2172 0.3188 0.033 Uiso 1 1 calc R . . Cl1 Cl 0.4726(5) 0.3250(3) 0.1009(11) 0.041(5) Uani 1 1 d . . . Cl2 Cl 0.7777(5) 0.0439(2) 0.1137(10) 0.053(6) Uani 1 1 d . . . Cl3 Cl 0.4730(5) 0.1445(3) 0.3702(8) 0.037(6) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.038(6) 0.038(6) 0.04(2) -0.005(13) -0.007(13) -0.002(3) C2 0.030(5) 0.025(5) 0.03(2) -0.001(10) -0.001(11) 0.000(4) Cl1 0.0381(12) 0.0536(12) 0.033(15) 0.008(4) -0.004(4) 0.0131(9) Cl2 0.0518(17) 0.0353(12) 0.073(18) -0.005(3) 0.013(4) 0.0089(8) Cl3 0.0430(14) 0.0399(11) 0.03(2) -0.002(3) 0.009(3) 0.0000(8) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 Cl1 1.81(3) . ? C1 Cl2 1.78(2) . ? C1 C2 1.29(8) . ? C2 Cl3 1.86(3) . ? C1 H11 0.9800 . ? C2 H21 0.9700 . ? C2 H22 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 C2 Cl3 116(2) . . ? C2 C1 Cl1 114(2) . . ? C2 C1 Cl2 116(3) . . ? Cl2 C1 Cl1 109(2) . . ? Cl1 C1 H11 105.8 . . ? Cl2 C1 H11 105.8 . . ? Cl3 C2 H21 108.4 . . ? Cl3 C2 H22 108.4 . . ? C1 C2 H21 108.4 . . ? C1 C2 H22 108.4 . . ? C2 C1 H11 105.8 . . ? H21 C2 H22 107.4 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag Cl1 C1 C2 Cl3 64(2) . . . . ? Cl2 C1 C2 Cl3 -63(2) . . . . ? _diffrn_measured_fraction_theta_max 0.280 _diffrn_reflns_theta_full 25.24 _diffrn_measured_fraction_theta_full 0.280 _refine_diff_density_max 0.197 _refine_diff_density_min -0.204 _refine_diff_density_rms 0.059 ############################################################################# data_112TCE_191GPa _database_code_depnum_ccdc_archive 'CCDC 680548' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,2-trichloroethane ; _chemical_name_common 1,1,2-trichloroethane _chemical_melting_point 236.6 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'P 1 1 21/n' _symmetry_space_group_name_Hall '-P 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y+1/2, z+1/2' '-x, -y, -z' 'x-1/2, y-1/2, -z-1/2' _cell_length_a 4.9978(15) _cell_length_b 8.208(3) _cell_length_c 10.982(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 94.77(3) _cell_volume 448.9(3) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 4729 _cell_measurement_theta_min 3.10 _cell_measurement_theta_max 29.14 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.44 _exptl_crystal_size_mid 0.44 _exptl_crystal_size_min 0.23 _exptl_crystal_size_rad 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.974 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.835 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.60 _exptl_absorpt_correction_T_max 0.65 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 1.91(5) GPa (1910000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 1200000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2469 _diffrn_reflns_av_R_equivalents 0.2060 _diffrn_reflns_av_sigmaI/netI 0.1210 _diffrn_reflns_limit_h_min -5 _diffrn_reflns_limit_h_max 5 _diffrn_reflns_limit_k_min -8 _diffrn_reflns_limit_k_max 8 _diffrn_reflns_limit_l_min -9 _diffrn_reflns_limit_l_max 9 _diffrn_reflns_theta_min 3.11 _diffrn_reflns_theta_max 25.20 _reflns_number_total 353 _reflns_number_gt 337 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0683P)^2^+0.4707P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment constr _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 353 _refine_ls_number_parameters 46 _refine_ls_number_restraints 12 _refine_ls_R_factor_all 0.0594 _refine_ls_R_factor_gt 0.0419 _refine_ls_wR_factor_ref 0.1151 _refine_ls_wR_factor_gt 0.1137 _refine_ls_goodness_of_fit_ref 1.182 _refine_ls_restrained_S_all 1.162 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group C1 C 0.7565(8) 0.2441(5) 0.1675(6) 0.0255(14) Uani 1 1 d U . . H11 H 0.9160 0.3100 0.1381 0.031 Uiso 1 1 calc R . . C2 C 0.7561(8) 0.2553(6) 0.3028(6) 0.0286(14) Uani 1 1 d U . . H21 H 0.7576 0.3693 0.3263 0.034 Uiso 1 1 calc R . . H22 H 0.9191 0.2139 0.3339 0.034 Uiso 1 1 calc R . . Cl1 Cl 0.4704(2) 0.32559(16) 0.10167(15) 0.0371(6) Uani 1 1 d . . . Cl2 Cl 0.7783(2) 0.04125(17) 0.11469(15) 0.0388(6) Uani 1 1 d . . . Cl3 Cl 0.4738(2) 0.14413(14) 0.37131(13) 0.0331(6) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 C1 0.0219(19) 0.023(4) 0.032(6) 0.0048(17) -0.001(2) 0.0005(16) C2 0.025(2) 0.022(4) 0.038(6) 0.0020(18) -0.001(2) -0.0034(17) Cl1 0.0309(7) 0.0465(14) 0.035(2) 0.0085(5) -0.0048(6) 0.0116(5) Cl2 0.0449(8) 0.0293(13) 0.043(2) -0.0052(4) 0.0093(6) 0.0059(6) Cl3 0.0358(7) 0.0298(13) 0.033(2) 0.0033(4) 0.0097(6) -0.0024(5) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag C1 Cl1 1.782(5) . ? C1 Cl2 1.775(5) . ? C1 C2 1.489(9) . ? C2 Cl3 1.782(5) . ? C1 H11 0.9800 . ? C2 H21 0.9700 . ? C2 H22 0.9700 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 C2 Cl3 113.3(3) . . ? C2 C1 Cl1 112.1(3) . . ? C2 C1 Cl2 112.6(3) . . ? Cl2 C1 Cl1 109.5(3) . . ? Cl1 C1 H11 107.5 . . ? Cl2 C1 H11 107.5 . . ? Cl3 C2 H21 108.9 . . ? Cl3 C2 H22 108.9 . . ? C1 C2 H21 108.9 . . ? C1 C2 H22 108.9 . . ? C2 C1 H11 107.5 . . ? H21 C2 H22 107.7 . . ? loop_ _geom_torsion_atom_site_label_1 _geom_torsion_atom_site_label_2 _geom_torsion_atom_site_label_3 _geom_torsion_atom_site_label_4 _geom_torsion _geom_torsion_site_symmetry_1 _geom_torsion_site_symmetry_2 _geom_torsion_site_symmetry_3 _geom_torsion_site_symmetry_4 _geom_torsion_publ_flag Cl1 C1 C2 Cl3 61.1(4) . . . . ? Cl2 C1 C2 Cl3 -62.9(4) . . . . ? _diffrn_measured_fraction_theta_max 0.440 _diffrn_reflns_theta_full 25.20 _diffrn_measured_fraction_theta_full 0.440 _refine_diff_density_max 0.247 _refine_diff_density_min -0.246 _refine_diff_density_rms 0.070 #############################################################################