Supplementary information

Thermoresponsive Dendronized Polymers with Tunable LCST

Wen Li, Afang Zhang* and A. Dieter Schlüter

Institute of Polymers, Department of Materials, ETH Zurich,
Wolfgang-Pauli-Str. 10, HCI G525, 8093 Zurich (Switzerland) and School of
Materials Science and Engineering, Zhengzhou University, Daxue Beilu 75,
Zhengzhou 450052 (China).

E-mails: afang.zhang@mat.ethz.ch or azhang@zzu.edu.cn

Fax: (+41) 44-6331390. Tel: (+41) 44-6336739.
Content

<table>
<thead>
<tr>
<th>Experiment section</th>
<th>S4-S10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure S1. Plots of the temperature against the transmittance of PG1(MD) (a) and PG2(MD) (b) in 20 mM sodium phosphate buffer solution (0.25 wt%, PH 7.0) with the presence of different concentration of sodium chloride</td>
<td>S10</td>
</tr>
<tr>
<td>Figure S2. Surface tension vs time for pendant drops formed at air–water interface from 0.25 wt% aqueous solutions of PG1(ET), PG2(ET), PG1(MD), PG2(MD), PG1(MT) and PG2(MT)</td>
<td>S11</td>
</tr>
<tr>
<td>Figure S3. 1H NMR spectrum of compound 2a in CD$_2$Cl$_2$</td>
<td>S11</td>
</tr>
<tr>
<td>Figure S4. 13C NMR spectrum of compound 2a in CD$_2$Cl$_2$</td>
<td>S12</td>
</tr>
<tr>
<td>Figure S5. 1H NMR spectrum of compound 2b in CD$_2$Cl$_2$</td>
<td>S12</td>
</tr>
<tr>
<td>Figure S6. 13C NMR spectrum of compound 2b in CD$_2$Cl$_2$</td>
<td>S13</td>
</tr>
<tr>
<td>Figure S7. 1H NMR spectrum of compound 2c CD$_2$Cl$_2$</td>
<td>S13</td>
</tr>
<tr>
<td>Figure S8. 13C NMR spectrum of compound 2c CD$_2$Cl$_2$</td>
<td>S14</td>
</tr>
<tr>
<td>Figure S9. 1H NMR spectrum of compound 2d CD$_2$Cl$_2$</td>
<td>S14</td>
</tr>
<tr>
<td>Figure S10. 13C NMR spectrum of compound 2d CD$_2$Cl$_2$</td>
<td>S15</td>
</tr>
<tr>
<td>Figure S11. 1H NMR spectrum of compound 2e CD$_2$Cl$_2$</td>
<td>S15</td>
</tr>
<tr>
<td>Figure S12. 13C NMR spectrum of compound 2e in CD$_2$Cl$_2$</td>
<td>S16</td>
</tr>
<tr>
<td>Figure S13. 1H NMR spectrum of compound 2f in CD$_2$Cl$_2$</td>
<td>S16</td>
</tr>
<tr>
<td>Figure S14. 13C NMR spectrum of compound 2f in CD$_2$Cl$_2$</td>
<td>S17</td>
</tr>
<tr>
<td>Figure S15. 1H NMR spectrum of compound 3a in CD$_2$Cl$_2$</td>
<td>S17</td>
</tr>
<tr>
<td>Figure S16. 13C NMR spectrum of compound 3a in CD$_2$Cl$_2$</td>
<td>S18</td>
</tr>
<tr>
<td>Figure</td>
<td>1H NMR spectrum of compound</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>S17</td>
<td>3b in CD2Cl2</td>
</tr>
<tr>
<td>S18</td>
<td></td>
</tr>
<tr>
<td>S19</td>
<td></td>
</tr>
<tr>
<td>S20</td>
<td></td>
</tr>
<tr>
<td>S21</td>
<td></td>
</tr>
<tr>
<td>S22</td>
<td></td>
</tr>
<tr>
<td>S23</td>
<td></td>
</tr>
<tr>
<td>S24</td>
<td></td>
</tr>
<tr>
<td>S25</td>
<td></td>
</tr>
<tr>
<td>S26</td>
<td></td>
</tr>
<tr>
<td>S27</td>
<td></td>
</tr>
<tr>
<td>S28</td>
<td></td>
</tr>
<tr>
<td>S29</td>
<td></td>
</tr>
<tr>
<td>S30</td>
<td></td>
</tr>
<tr>
<td>S31</td>
<td></td>
</tr>
<tr>
<td>S32</td>
<td></td>
</tr>
<tr>
<td>S33</td>
<td></td>
</tr>
<tr>
<td>S34</td>
<td></td>
</tr>
</tbody>
</table>
Experimental section

Materials. Tosylated diethylene glycol monomethyl ether (Me-DEG-Ts) and tosylated triethylene glycol monoethyl ether (Et-TEG-Ts) was synthesized according to literature method.\(^1\) Compound 2g was synthesized according to our previous reports.\(^2\) Tetrahydrofuran (THF) was refluxed over lithium aluminum hydride (LAH) and dichloromethane (DCM) was distilled from CaH\(_2\) for drying. Other reagents and solvents were purchased at reagent grade and used without further purification. All reactions were run under a nitrogen atmosphere. Macherey-Nagel precoated TLC plates (silica gel 60 G/UV\(_{254}\), 0.25 mm) were used for thin-layer chromatography (TLC) analysis. Silica gel 60 M (Macherey-Nagel, 0.04–0.063 mm, 230–400 mesh) was used as the stationary phase for column chromatography.

Instrumentation and Measurements. \(^1\)H and \(^1\)C NMR spectra were recorded on Bruker AV 500 (\(^1\)H: 500 MHz, \(^1\)C: 125 MHz) spectrometers, and chemical shifts are reported as \(\delta\) values (ppm) relative to internal Me\(_4\)Si. High resolution MALDI-TOF-MS analyses were performed by the MS service of the Laboratorium für Organische Chemie, ETH Zürich, on IonSpec Ultra instruments. Elemental analyses were performed by the Mikrolabor of the Laboratorium für Organische Chemie, ETH Zürich. Gel Permeation Chromatography (GPC) measurements were carried out on a PL-GPC 220 instrument with 2×PL-Gel Mix-B LS column set (2×30 cm) equipped with refractive index (RI), viscosity, and light scattering (LS; 15 ° and 90 ° angles) detectors, and DMF (containing 1 g·L\(^{-1}\) LiBr) as eluent at 45 °C. Universal calibration was performed with poly(methyl methacrylate) standards in the range of \(M_p = 2680\) to 3900000 (Polymer Laboratories Ltd, UK). UV/vis turbidity measurements were carried out for the lower critical solution temperature (LCST) determination on a Varian Cary 100 Bio UV/vis spectrophotometer equipped with a thermostatically regulated bath. Solutions of the dendronized polymers in de-ionized water or in PH 7 sodium phosphate buffer solution (with concentration of 0.25 wt %) were filtered with a 0.45 \(\mu\)m filter before adding into a cuvette (path length 1 cm), which was placed in the spectrophotometer and heated or cooled at a rate of 0.2 °C·min\(^{-1}\). The absorptions of the solution at \(\lambda = 500\) nm were recorded every minute. Surface tension of the polymers at the air-water interface was measured via pendent drop method using PAT1 (Sinterface Technologies, Berlin, Germany). For each experiment, one drop of the polymer aqueous solution (0.25 wt %) with a constant volume of 35 mm\(^3\) was set at 22 °C. The surface tension as a function of time was then determined according to Laplace-Gauss equation. The surface tension value was selected after the equilibrium.

Synthesis

General procedure for Williamson etherification to form G1 ester (A). A mixture of methyl gallate (45.6 mmol), tosylated OEG (182.3 mmol), KI (36.5 mmol), and potassium carbonate (K₂CO₃) (456.0 mmol) in dry DMF (200 mL) was stirred at 80 °C over 24 h. After removal of DMF in vacuo, the residue was dissolved in DCM and washed sequentially with saturated NaHCO₃ and brine. After drying over MgSO₄, purification by column chromatography with hexane/ethyl acetate (1:5, v/v) afforded the product as a colorless oil.

General procedure for synthesis of G1 alcohol (B). LAH (25.1 mmol) was added to a solution of G1 ester (16.7 mmol) in dry THF (100 mL) at -5 °C, the mixture was stirred for 30 min, then warmed to r.t. and stirred for another 3 h. The reaction was quenched by dropwise addition of water (6 mL), 10% NaOH (15 mL), and water (20 mL) successively. The resulting precipitate was filtered and THF evaporated. The residue was dissolved in DCM and washed with brine. After drying over MgSO₄, purification by column chromatography with DCM/MeOH (20:1, v/v) afforded the product as a colorless oil.

General procedure for synthesis of G1 macromonomer (C). Methacryloyl chloride (MAC) (8.65 mmol) was added dropwise to a mixture of G1 alcohol (4.32 mmol), TEA (21.60 mmol), and DMAP (0.1 g) in dry DCM (50 mL) at 0 °C over 5 min. The mixture was stirred for 3 h at r.t. After washing successively with aqueous NaHCO₃ solution and brine, the organic phase was dried over MgSO₄. Purification by column chromatography with DCM / MeOH (20:1, v/v) afforded the product as a colorless oil.

General procedure for synthesis of G2 acid (D). Compound 2g (3.28 mmol) in dry THF (30 mL) was added dropwise to a mixture of G1 alcohol (10.81 mmol), KI (9.84 mmol), 15-crown-5 (3.28 mmol), and NaH (32.5 mmol) in dry THF (60 mL). The mixture was stirred for 24 h at r.t. before addition of MeOH to quench the excess NaH. After evaporation of solvent in vacuo, the residue was dissolved in DCM and successively washed with saturated NaHCO₃ and brine. After drying over MgSO₄, purification by column chromatography with DCM/MeOH (15:1, v/v) afforded the product as a yellow oil.

General procedure for synthesis of G2 alcohol (E). N-Methylmorpholine (4.2 mmol) and ethyl chloroformate (4.2 mmol) were added sequentially to a solution of G2 acid (0.84 mmol) in dry THF (50 mL) at -15 °C, and the mixture was stirred for 1 h. Then NaBH₄ (6.72 mmol) was added at -5 °C and the reaction mixture stirred for another 4 h. Water was added to quench the reaction and THF then evaporated. The residue was dissolved in DCM, and then washed successively with saturated NaHCO₃ and brine. After drying over MgSO₄, purification by column chromatography with DCM / MeOH (10:1, v/v) afforded the product as a colorless oil.

General procedure for synthesis of G2 macromonomer (F). MAC (3.18 mmol) was added dropwise to a mixture of G2 alcohol (0.64 mmol), TEA (3.18 mmol), and DMAP (0.15 g) in dry DCM (40 mL) at 0 °C over 5 min. The mixture was stirred for 5 h at r.t. and then quenched with MeOH. After washing
successively with aqueous NaHCO₃ solution and brine, the organic phase was
dried over MgSO₄. Purification by column chromatography with ethyl acetate / MeOH (5:1, v/v) afforded the product as a colorless oil.

General Procedure for Polymerization in DMF Solution (G). The required
amounts of monomer and AIBN (0.5 wt % to the monomer) were dissolved in
DMF in a Schlenk tube. The solution was thoroughly deoxygenated by several
freeze-pump-thaw cycles and then stirred at 60 °C for the designed time. After
cooling to r.t., the polymer was dissolved in DCM and purified by silica gel
column chromatography with DCM as eluent.

General Procedure for Polymerization in Bulk (H). The required
amounts of monomer and AIBN (0.5 wt % to the monomer) were added into a Schlenk
tube. The mixture was thoroughly deoxygenated by several freeze-pump-thaw
cycles and then stirred at 60 °C for the designed time. The purification of the
polymer followed the same process as in procedure G.

Methyl 3,4,5-tris(2-(2-methoxyethoxy)ethoxy)benzoate (2a). According to
general procedure A, from methyl gallate (8.4 g, 45.6 mmol), Me-DEG-Ts (50.0
g, 182.3 mmol), KI (5.8 g, 36.5 mmol), K₂CO₃ (63.0 g, 456.0 mmol) and DMF
(200 mL). 2a was yielded as a colorless oil (19.5 g, 87%). 1H NMR (CD₂Cl₂): δ
3.32–3.35 (m, 9H, CH₃), 3.48–3.55 (m, 6H, CH₂), 3.62–3.69 (m, 6H, CH₂),
3.74–3.76 (m, 2H, CH₂), 3.82–3.86 (m, 7H, CH₂ + CH₃), 4.16–4.18 (m, 6H, CH₂),
7.28 (s, 2H, CH). 13C NMR (CD₂Cl₂): δ 52.12, 58.75, 58.78, 68.93, 69.68,
70.47, 70.71, 70.75, 70.79, 72.11, 72.58, 108.65, 125.20, 142.46, 152.46,
166.54. MS: m/z calcd, 490.24; found, 513.2315 [M + Na]⁺. Elemental analysis

3,4,5-Tris(2-(2-methoxyethoxy)ethoxy)benzyl alcohol (2b). According to
general procedure B, from LAH (0.95 g, 25.1 mmol), 2a (8.2 g, 16.7 mmol), dry
THF (100 mL), water (6 mL), 10% NaOH (15 mL), and water (20 mL). 2b was
yielded as a colorless oil (7 g, 91%). 1H NMR (CD₂Cl₂): δ 3.35 (s, 9H, CH₃),
3.52–3.55 (m, 6H, CH₂), 3.64–3.68 (m, 6H, CH₂), 3.75 (t, 2H, CH₂), 3.82 (t, 4H, CH₂),
4.10 (t, 2H, CH₂), 4.14 (t, 4H, CH₂), 4.56 (s, 2H, CH₂), 6.62 (s, 2H, CH).
13C NMR (CD₂Cl₂): δ 58.76, 65.11, 68.82, 69.88, 70.42, 70.68, 72.08, 72.12,
72.44, 105.99, 137.13, 137.47, 152.77. MS: m/z calcd, 462.25; found,
485.2363 [M + Na]⁺. Elemental analysis (%) calcd for C₂₂H₃₈O₁₀, 462.54: C,
57.13; H, 8.28. Found: C, 56.53; H, 8.31.

3,4,5-Tris(2-(2-methoxyethoxy)ethoxy)benzyl methacrylate (2c). According
to general procedure C, from MAC (0.90 g, 8.65 mmol), 2b (2.00 g, 4.32 mmol),
TEA (2.19 g, 21.60 mmol), DMAP (0.1 g) and dry DCM (50 mL). 2c was
yielded as a colorless oil (2.10 g, 92%). 1H NMR (CD₂Cl₂): δ 1.96 (s, 3H,CH₃),
3.35 (s, 9H, CH₃), 3.48–3.54 (m, 6H, CH₂), 3.64–3.68 (m, 6H, CH₂), 3.75 (t, 2H, CH₂),
3.83 (t, 4H, CH₂), 4.10–4.15 (m, 6H, CH₂), 5.08 (s, 2H, CH₂), 5.60 (s, 1H, CH₂),
6.13 (s, 1H, CH₂), 6.63 (s, 2H, CH). 13C NMR (CD₂Cl₂): δ = 18.23, 58.76,
58.78, 66.46, 68.91, 69.78, 70.44, 70.69, 70.74, 72.08, 72.12, 72.46, 107.42,
125.53, 131.82, 136.57, 138.19, 152.79, 167.10. MS: m/z calcd 530.27; found
553.2627 [M + Na]. Elemental analysis (%) calcd for C_{26}H_{42}O_{11}, 530.61: C, 58.85; H, 7.98. Found: C, 58.26; H, 7.71.

Methyl 3,4,5-Tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy)benzoate (2d). According to general procedure A, from methyl gallate (8.86 g, 48.13 mmol), Et-TEG-Ts (64.00 g, 192.53 mmol), KI (6.16 g, 38.50 mmol), K_{2}CO_{3} (66.52 g, 481.30 mmol) and dry DMF (250 mL). 2d was yielded as a colorless oil (26.50 g, 83%). 1H NMR (CD_{2}Cl_{2}): δ 1.18–1.19 (m, 9H, CH_{3}), 3.46–3.51 (m, 6H, CH_{2}), 3.53–3.71 (m, 24H, CH_{2}), 3.77 (t, 2H, CH_{2}), 3.85–3.87 (m, 7H, CH_{2} + CH_{3}), 4.19–4.23 (m, 6H, CH_{2}), 7.30 (s, 2H, CH). 13C NMR (CD_{2}Cl_{2}): δ 15.14, 52.12, 66.55, 68.93, 69.71, 69.96, 70.63, 70.68, 70.75, 70.78, 70.90, 72.80, 108.68, 125.20, 142.49, 152.47, 166.54. MS: m/z calcd, 664.37; found, 687.3572 [M + Na]+. Elemental analysis (%) calcd for C_{32}H_{56}O_{14}, 664.79: C, 57.82; H, 8.49. Found: C, 57.35; H, 8.55.

3,4,5-Tris(2-(2-(2-ethoxyethoxy)ethoxy)benzyl alcohol (2e). According to general procedure B, from LAH (1.28 g, 33.70 mmol), 2d (11.20 g, 16.85 mmol), dry THF (150 mL), water (8 mL), 10% NaOH (20 mL) and water (30 mL). 2e was yielded as a colorless oil (9.9 g, 92%). 1H NMR (CD_{2}Cl_{2}): δ 1.16–1.20 (m, 9H, CH_{3}), 3.47–3.70 (m, 30H, CH_{2}), 3.76 (t, 2H, CH_{2}), 3.83 (t, 4H, CH_{2}), 4.11 (t, 2H, CH_{2}), 4.16 (t, 4H, CH_{2}), 4.56 (s, 2H, CH_{2}), 6.63 (s, 2H, CH). 13C NMR (CD_{2}Cl_{2}): δ 15.13, 65.13, 66.56, 68.86, 69.91, 69.96, 70.58, 70.70, 70.74, 70.86, 72.40, 106.15, 137.13, 137.59, 152.80. MS: m/z calcd, 636.37; found, 659.3621 [M + Na]^+. Elemental analysis (%) calcd for C_{31}H_{56}O_{13}, 636.78: C, 58.47; H, 8.86. Found: C, 58.22; H, 8.91.

3,4,5-Tris(2-(2-(2-ethoxyethoxy)ethoxy)benzyl methacrylate (2f). According to general procedure C, from MAC (0.79 g, 7.54 mmol), 2e (2.40 g, 3.77 mmol), TEA (1.91 g, 18.85 mmol), DMAP (0.15 g) and dry DCM (50 mL). 2f was yielded as a colorless oil (2.44 g, 92%). 1H NMR (CD_{2}Cl_{2}): δ 1.16-1.19 (m, 9H, CH_{3}), 1.96 (s, 3H, CH_{3}), 3.47–3.70 (m, 30H, CH_{2}), 3.76 (t, 2H, CH_{2}), 3.84 (t, 4H, CH_{2}), 4.11–4.16 (m, 6H, CH_{2}), 5.08 (s, 2H, CH_{2}), 5.60 (s, 1H, CH_{2}), 6.13 (s, 1H, CH_{2}), 6.63 (s, 2H, CH). 13C NMR (CD_{2}Cl_{2}): δ 15.15, 18.25, 66.47, 66.55, 68.89, 69.80, 69.97, 70.59, 70.68, 70.70, 70.77, 70.89, 72.46, 107.42, 125.54, 131.82, 136.56, 138.20, 152.79, 167.09. MS: m/z calcd 704.40; found 727.3862 [M + Na]^+. Elemental analysis (%) calcd for C_{35}H_{60}O_{14}, 704.85: C, 59.64; H, 8.86. Found: C, 59.87; H, 8.61.

3,4,5-tris(2-(2-(3,4,5-tris(2-(2-methoxyethoxy)ethoxy)benzyl-oxy)ethoxy)ethoxy)benzoic acid (3a). According to general procedure D, from 2g (3.42 g, 3.28 mmol), dry THF (30 mL), 2b (5.00 g, 10.81 mmol), KI (1.57 g, 9.84 mmol), 15-crown-5 (0.72 g, 3.28 mmol), NaH (0.78 g, 32.5 mmol) and dry THF (60 mL). 3a was yielded as a yellow oil (3.00 g, 48%). 1H NMR (CD_{2}Cl_{2}): δ 3.35 (s, 27H, CH_{3}), 3.53–3.83 (m, 84H, CH_{2}), 4.09–4.17 (m, 24H, CH_{2}), 4.42 (s, 6H, CH_{2}), 6.58 (s, 6H, CH), 7.31 (s, 2H, CH). 13C NMR (CD_{2}Cl_{2}): δ 58.76, 68.79, 68.89, 69.69, 69.83, 70.40, 70.68, 70.74, 70.88, 72.07, 72.12, 72.40, 72.54, 73.19, 106.83, 109.00, 109.07, 125.11, 134.20, 137.59, 142.59, 152.40, 152.54, 152.69, 167.89. MS: m/z calcd 1898.97; found 1921.9584 [M + Na]^+.

S7
Elemental analysis (%) calcd for C_{91}H_{150}O_{41}, 1900.16: C 57.52; H, 7.96. Found: C, 57.09; H, 7.83.

3,4,5-tris(2-(2-(3,4,5-tris(2-(2-methoxyethoxy)ethoxy)benzyl-oxo)ethoxy)ethoxy)benzyl alcohol (3b). According to general procedure E, from N-Methylmorpholine (0.45 g, 4.45 mmol), ethyl chloroformate (0.46 g, 4.2 mmol), 3a (1.6 g, 0.84 mmol), dry THF (50 mL) and NaBH4 (0.25 g, 6.61 mmol). 3b was yielded as a colorless oil (1.3 g, 82%). 1H NMR (CD2Cl2): δ 3.30–3.34 (m, 27H, CH3), 3.52–3.81 (m, 84H, CH2), 4.08–4.13 (m, 24H, CH2), 4.43 (s, 6H, CH2), 4.53 (s, 2H, CH2), 6.59 (s, 6H, CH), 6.61 (s, 2H, CH). 13C NMR (CD2Cl2): δ 58.76, 58.78, 64.93, 68.82, 69.66, 69.82, 69.89, 70.43, 70.59, 70.68, 70.72, 70.85, 72.08, 72.13, 72.43, 73.18, 106.01, 106.79, 134.19, 137.61, 152.71, 152.75. MS: m/z calcd 1884.99; found 1907.9714 [M + Na]+. Elemental analysis (%) calcd for C_{91}H_{152}O_{40}, 1886.18: C 57.95; H, 8.12. Found: C, 57.68; H, 8.03.

3,4,5-tris(2-(2-(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)benzyl-oxo)ethoxy)ethoxy)ethoxy)benzyl methacrylate (3c). According to general procedure F, from MAC (0.33 g, 3.18 mmol), 3b (1.2 g, 0.64 mmol), TEA (0.32 g, 3.18 mmol), DMAP (0.15 g) and dry DCM (40 mL). 3c was yielded as a colorless oil (1.05 g, 85%). 1H NMR (CD2Cl2): δ 3.30–3.35 (m, 27H, CH3), 3.49–3.83 (m, 84H, CH2), 4.08–4.15 (m, 24H, CH2), 4.43 (s, 6H, CH2), 5.07 (s, 2H, CH2), 5.59 (s, 1H, CH2), 6.12 (s, 1H, CH2), 6.59 (s, 6H, CH), 6.63 (s, 2H, CH). 13C NMR (CD2Cl2): δ 18.51, 59.02, 59.04, 66.70, 69.00, 69.09, 69.15, 69.92, 70.08, 70.69, 70.85, 70.95, 70.98, 71.14, 72.34, 72.39, 72.69, 73.45, 106.90, 107.06, 107.64, 107.74, 125.80, 132.11, 134.43, 136.81, 137.55, 138.48, 139.52, 139.53, 152.98, 153.05, 153.11, 153.17, 167.32. MS: m/z calcd 1953.01; found 1976.005 [M + Na]+. Elemental analysis (%) calcd for C_{95}H_{156}O_{41}, 1954.25: C 58.39; H, 8.05. Found: C, 58.12; H, 7.93.

3,4,5-Tris(2-(2-(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)benzyl-oxo)ethoxy)ethoxy)ethoxy)benzoyl acid (3d). According to general procedure D, from 2g (4.05 g, 3.88 mmol), dry THF (30 mL), 2e (8.15 g, 12.80 mmol), KI (1.86 g, 11.60 mmol), 15-crown-5 (0.85 g, 3.88 mmol), NaH (0.92 g, 38.40 mmol) and dry THF (100 mL). 3d was yielded as a yellow oil (4.7 g, 50%). 1H NMR (CD2Cl2): δ 1.16–1.19 (m, 27H, CH3), 3.47–3.51 (m, 18H, CH2), 3.55–3.70 (m, 96H, CH2), 3.75–3.77 (m, 8H, CH2), 3.82–3.84 (m, 16H, CH2), 4.10 (t, 6H, CH2), 4.13–4.18 (m, 16H, CH2), 4.20 (t, 2H, CH2), 4.42 (s, 6H, CH2), 6.59 (s, 6H, CH), 7.31 (s, 2H, CH). 13C NMR (CD2Cl2): δ 15.13, 66.56, 68.76, 68.86, 69.65, 69.69, 69.74, 69.83, 69.94, 70.54, 70.59, 70.66, 70.72, 70.83, 70.88, 71.07, 72.39, 72.52, 73.18, 106.82, 108.98, 125.97, 134.24, 137.55, 142.25, 152.33, 152.67, 167.71. MS: m/z calcd, 2421.34; found, 2444.335 [M + Na]+. Elemental analysis (%) calcd for C_{118}H_{204}O_{50}, 2422.88: C, 58.50; H, 8.49. Found: C, 57.39; H, 8.27.

3,4,5-Tris(2-(2-(3,4,5-tris(2-(2-ethoxyethoxy)ethoxy)ethoxy)ethoxy)benzyl-oxy)ethoxy)ethoxy)ethoxy)benzyl alcohol (3e). According to general procedure E, from N-Methylmorpholine (0.31 g, 3.06 mmol), ethyl
chloroformate (0.34 g, 3.13 mmol), 3d (1.50 g, 0.62 mmol), dry THF (30 mL) and NaBH₄ (0.19 g, 4.96 mmol). 3e was yielded as a colorless oil (1.2 g, 81%).

1H NMR (CD₂Cl₂): δ 1.16–1.19 (m, 27H, CH₃), 3.46–3.70 (m, 114H, CH₂), 3.76 (t, 8H, CH₂), 4.09–4.14 (m, 24H, CH₂), 4.44 (s, 6H, CH₂), 4.54 (s, 2H, CH₂), 6.59 (s, 6H, CH), 6.61 (s, 2H, CH). 13C NMR (CD₂Cl₂): δ 15.15, 64.88, 66.55, 66.79, 69.65, 69.83, 69.89, 69.96, 70.57, 70.67, 70.70, 70.75, 70.76, 70.86, 72.42, 73.18, 105.99, 106.79, 134.19, 137.41, 137.60, 152.71, 152.73. MS: m/z calc'd, 2407.36; f ound, 2430.355 [M + Na]⁺.

Elemental analysis (%) calcd for C₁₁₈H₂₀₆O₄₉: C, 58.84; H, 8.62. Found: C, 58.28; H, 8.50.

3,4,5-Tris(2-(2-(2-(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy)benzyl-0xy)ethoxy)ethoxy)ethoxy)benzyl methacrylate (3f). According to general procedure F, from MAC (0.22 g, 2.08 mmol), 3e (1.00 g, 0.42 mmol), TEA (0.21 g, 2.08 mmol), DMAP (0.15 g) and dry DCM (40 mL). 3f was yielded as a colorless oil (0.85 g, 83%). 1H NMR (CD₂Cl₂): δ 1.17–1.19 (m, 27H, CH₃), 1.95 (s, 3H, CH₃), 3.46–3.70 (m, 114H, CH₂), 3.76 (t, 8H, CH₂), 4.09–4.15 (m, 24H, CH₂), 4.43 (s, 6H, CH₂), 5.07 (s, 2H, CH₂), 5.59 (s, 1H, CH₂), 6.12 (s, 1H, CH₂), 6.59 (s, 6H, CH), 6.64 (s, 2H, CH). 13C NMR (CD₂Cl₂): δ 15.15, 18.26, 66.45, 66.54, 68.81, 68.87, 69.65, 69.81, 69.84, 69.97, 70.58, 70.68, 70.70, 70.75, 70.76, 70.87, 72.43, 73.20, 106.81, 107.48, 125.57, 131.86, 134.17, 136.54, 137.63, 138.20, 152.72, 152.78, 167.07. MS: m/z calc'd 2475.39; found 2498.382 [M + Na]⁺. Elemental analysis (%) calcd for C₁₂₂H₂₁₀O₅₀: C, 59.16; H, 8.55. Found: C, 58.34; H, 8.35.

Poly(3,4,5-Tris(2-(2-methoxyethoxy)ethoxy)benzyl methacrylate) [PG1(MD)]. According to general procedure G from 2c (0.50 g, 0.94 mmol), AIBN (2.5 mg) and DMF (0.4 mL), polymerization for 4 h yielded PG1(MD) as colorless gel (0.14 g, 28%). 1H NMR (CD₂Cl₂): δ 0.83–1.06 (m, 3H, CH₃), 1.90 (br, 2H, CH₂), 3.29–3.32 (m, 9H, CH₃), 3.47–3.49 (m, 6H, CH₂), 3.62 (br, 6H, CH₂), 3.74 (br, 6H, CH₂), 4.06 (br, 6H, CH₂), 4.81 (br, 2H, CH₂), 6.55 (br, 2H, CH). 13C NMR (CD₂Cl₂): δ 58.72, 67.03, 68.84, 69.74, 70.41, 70.66, 70.80, 72.05, 72.11, 72.40, 72.48, 72.92, 107.16, 130.86, 130.96, 138.04, 152.77. The signals from the polymer backbone were so broad that they disappeared in the baseline. Elemental analysis (%) calcd for C₂₆H₄₂O₁₁₆ (530.61)ₙ: C, 58.85; H, 7.98. Found: C, 62.74; H, 7.59.

Poly(3,4,5-Tris(2-(2-ethoxyethoxy)ethoxy)benzyl methacrylate) [PG1(ET)]. According to general procedure H from 2f (0.50 g, 0.71 mmol) and AIBN (2.5 mg), polymerization for 3 h yielded PG1(ET) as colorless gel (0.34 g, 68%). 1H NMR (CD₂Cl₂): δ 0.86 (br, 2H, CH₃), 1.13–1.18 (m, 10H, CH₃ + CH₃), 3.43–3.64 (m, 30H, CH₃), 3.74 (br, 6H, CH₂), 4.06 (br, 6H, CH₂), 4.80 (br, 2H, CH₂), 6.53 (br, 2H, CH). 13C NMR (CD₂Cl₂): δ 15.22, 45.24, 66.49, 68.83, 69.75, 69.95, 70.55, 70.62, 70.70, 70.80, 72.48, 106.94, 130.83, 137.97, 152.76. The signals from the polymer backbone were so broad that they disappeared in the baseline. Elemental analysis (%) calcd for C₃₈H₆₆O₁₄₁₆ (704.85)ₙ: C, 59.64; H, 8.58. Found: C, 58.88; H, 8.55.
Poly(3,4,5-tris(2-(2-(2-(3,4,5-tris(2-(2-methoxyethoxy)ethoxy)benzyl-oxy)ethoxy)ethoxy)ethoxy)benzyl methacrylate) [PG2(MD)]. According to general procedure H from 3c (0.49 g, 0.25 mmol) and AIBN (2.5 mg), polymerization for 24 h yielded PG2(MD) as colorless gel (0.3 g, 61%). 1H NMR (CD$_2$Cl$_2$): δ 3.27–3.32 (m, 27H, CH$_3$), 3.47–3.74 (m, 84H, CH$_2$), 4.04 (br, 24H, CH$_2$), 4.35 (br, 6H, CH$_2$), 6.52 (br, 8H, CH). 13C NMR (CD$_2$Cl$_2$): δ 58.72, 68.83, 69.65, 69.78, 70.38, 70.56, 70.65, 70.04, 72.09, 72.44, 73.08, 106.59, 134.15, 137.58, 152.70. The signals from the polymer backbone were so broad that they disappeared in the baseline. Elemental analysis (%) calcd for (C$_{95}$H$_{156}$O$_{41}$)$_n$ (1948.21)$_n$: C, 58.57; H, 7.76. Found: C, 57.58; H, 8.01.

Poly(3,4,5-Tris(2-(2-(2-(3,4,5-tris(2-(2-(2-ethoxyethoxy)ethoxy)ethoxy)benzyl-oxy)ethoxy)ethoxy)ethoxy)benzyl methacrylate) [PG2(ET)]. According to general procedure H from 3f (0.76 g, 0.31 mmol) and AIBN (3.8 mg), polymerization for 24 h yielded PG2(ET) as colorless gel (0.47 g, 62%). 1H NMR (CD$_2$Cl$_2$): δ 1.12–1.13 (m, 27H, CH$_3$), 3.43–3.75 (m, 138H, CH$_2$), 4.05 (br, 24H, CH$_2$), 4.37 (br, 6H, CH$_2$), 6.52 (br, 8H, CH). 13C NMR (CD$_2$Cl$_2$): δ 15.23, 66.47, 68.87, 69.68, 69.81, 69.95, 70.54, 70.63, 70.70, 70.82, 72.45, 73.11, 106.56, 134.13, 137.63, 152.71. The signals from the polymer backbone were so broad that they disappeared in the baseline. Elemental analysis (%) calcd for (C$_{122}$H$_{210}$O$_{50}$)$_n$ (2476.97)$_n$: C, 59.16; H, 8.55. Found: C, 58.45; H, 8.43.

Figure S1. Plots of the temperature against the transmittance of PG1(MD) (a) and PG2(MD) (b) in 20 mM sodium phosphate buffer solution (0.25 wt%, PH 7.0) with the presence of different concentration of sodium chloride.
Figure S2. Surface tension vs time for pendant drops formed at air–water interface from 0.25 wt% aqueous solutions of PG1(ET), PG2(ET), PG1(MD), PG2(MD), PG1(MT) and PG2(MT).

Figure S3. 1H NMR spectrum of compound 2a in CD$_2$Cl$_2$.
Figure S4. 13C NMR spectrum of compound 2a in CD$_2$Cl$_2$.

Figure S5. 1H NMR spectrum of compound 2b in CD$_2$Cl$_2$.
Figure S6. 13C NMR spectrum of compound 2b in CD$_2$Cl$_2$.

Figure S7. 1H NMR spectrum of compound 2c in CD$_2$Cl$_2$.
Figure S8. 13C NMR spectrum of compound 2c in CD$_2$Cl$_2$.

Figure S9. 1H NMR spectrum of compound 2d in CD$_2$Cl$_2$.
Figure S10. 13C NMR spectrum of compound 2d in CD$_2$Cl$_2$.

Figure S11. 1H NMR spectrum of compound 2e in CD$_2$Cl$_2$.
Figure S12. 13C NMR spectrum of compound 2e in CD$_2$Cl$_2$.

Figure S13. 1H NMR spectrum of compound 2f in CD$_2$Cl$_2$.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
Figure S14. 13C NMR spectrum of compound 2f in CD$_2$Cl$_2$.

Figure S15. 1H NMR spectrum of compound 3a in CD$_2$Cl$_2$.

S17
Figure S16. 13C NMR spectrum of compound 3a in CD$_2$Cl$_2$.

Figure S17. 1H NMR spectrum of compound 3b in CD$_2$Cl$_2$.
Figure S18. 13C NMR spectrum of compound 3b in CD$_2$Cl$_2$.

Figure S19. 1H NMR spectrum of compound 3c in CD$_2$Cl$_2$.
Figure S20. 13C NMR spectrum of compound 3c in CD$_2$Cl$_2$.

Figure S21. 1H NMR spectrum of compound 3d in CD$_2$Cl$_2$.

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2008
Figure S22. 13C NMR spectrum of compound 3d in CD$_2$Cl$_2$.

Figure S23. 1H NMR spectrum of compound 3e in CD$_2$Cl$_2$.

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2008
Figure S24. 13C NMR spectrum of compound 3e in CD$_2$Cl$_2$.

Figure S25. 1H NMR spectrum of compound 3f in CD$_2$Cl$_2$.
Figure S26. 13C NMR spectrum of compound 3f in CD$_2$Cl$_2$.

Figure S27. 1H NMR spectrum of PG1(MD) in CD$_2$Cl$_2$.
Figure S28. 13C NMR spectrum of PG1(MD) in CD$_2$Cl$_2$.

Figure S29. 1H NMR spectrum of PG1(ET) in CD$_2$Cl$_2$.
Figure S30. 13C NMR spectrum of PG1(ET) in CD$_2$Cl$_2$.

Figure S31. 1H NMR spectrum of PG2(MD) in CD$_2$Cl$_2$.
Figure S32. 13C NMR spectrum of PG2(MD) in CD$_2$Cl$_2$.

Figure S33. 1H NMR spectrum of PG2(ET) in CD$_2$Cl$_2$.
Figure S34. 13C NMR spectrum of PG2(ET) in CD$_2$Cl$_2$.