A Modular and Organocatalytic Asymmetric Approach to γ-Butyrolactone Autoregulators from Streptomyces

Petteri Elsner, Hao Jiang, Johanne B. Nielsen, Filippo Pasi and Karl Anker Jørgensen*

[*] Danish National Research Foundation: Center for Catalysis
Department of Chemistry, Aarhus University
DK-8000 Aarhus C, Denmark
Fax (45) 8919 6199, e-mail: kaj@chem.au.dk

Contents

1. General Methods ... S2
2. Preparation of the catalysts S2
3. Preparation of the electrophile S3
4. Preparation of the nucleophiles S3
5. General procedure for the conjugate addition S7
6. General procedure for the deprotection/cyclization S12
7. Preliminary results for the reduction of 5b S16
8. The synthesis of IM-2 (8) S16
9. The synthesis of VB-D (10) S19
10. Overview of γ-butyrolactone autoregulators .. S21
11. X-Ray of 5f ... S22
12. Representative NMR spectra S23
1. General Methods.

NMR spectra were acquired on a Varian AS 400 spectrometer, running at 400 and 100 MHz for 1H and 13C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl$_3$, 7.26 ppm for 1H NMR, CDCl$_3$, 77.0 ppm for 13C NMR). The following abbreviations are used to indicate the multiplicity in 1H NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal. 13C NMR spectra were acquired on a broad band decoupled mode. In order to characterize 1H and 13C NMR spectra of diastereomeric (or keto-enol) mixtures, the following notations are used. *denotes the minor diastereomer (or the enol form); t denotes overlap of signals from both diastereomers (both the keto and the enol form), the number of protons (or carbons) given in the parentheses represent the sum of protons (or carbons) from both diastereomers (keto-enol forms). Mass spectra were recorded on a micromass LCT spectrometer using electrospray (ES$^+$) ionization techniques. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminium-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO$_4$ dip. Melting points are uncorrected. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpak AD and Daicel Chiralcel OD columns) or by GC using a chiral Chrompack CP Chiralsil-Dex Cβ column. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) and Iatrobeads (Iatron Laboratories Inc. 6RS-8060) were used.

2. Preparation of the catalysts

Catalysts 3a-d were prepared according to the literature procedure.1

3. Preparation of the electrophile

\[(E)\text{-}tert\text{-}butyldimethyl(3\text{-}nitroallyloxy)\text{silane (2)} \]

\[\text{O}_2\text{N} \overset{\text{OTBDMS}}{\longrightarrow} \]

The silyloxyacetaldehyde\(^2\) (2 mmol) and MeNO\(_2\) (183 mg, 3 mmol) were dissolved in 1:1 THF(dry)/t-BuOH (1 mL). t-BuOK (22.4 mg, 0.2 mmol) was then added at 0 °C. The mixture was allowed to slowly warm up to rt and stirred over night under N\(_2\) atmosphere. The reaction was then diluted with H\(_2\)O (10 mL) and drops of brine, extracted with EtOAc (3 x 15 mL), dried over MgSO\(_4\) and concentrated in vacuo. To the afforded crude Henry addition product in anhyd. CH\(_2\)Cl\(_2\) (10 mL) was added MeSO\(_2\)Cl (356 mg, 3.1 mmol) at 0 °C in one portion. Et\(_3\)N (628 mg, 6.2 mmol) was then slowly added over 5 min. The reaction was stirred at 0 °C for 3 min and quenched with 1 M KHSO\(_4\). The aq. phase was extracted twice with CH\(_2\)Cl\(_2\). The combined organic layers were dried over MgSO\(_4\) and concentrated in vacuo. Purification by FC (5:95 to 1:4 EtOAc/hexane) provided the nitroalkene 2 as a yellowish liquid in 64% yield over 2 steps.\(^1\)H NMR (400 MHz, CDCl\(_3\)) 7.32 (dt, \(J = 12.98, 3.03\) Hz, 1H), 7.17 (dt, \(J = 12.97, 2.39\) Hz, 1H), 4.44 (dd, \(J = 3.02, 2.42\) Hz, 2H), 0.94-0.91 (m, 9H), 0.10-0.09 (m, 6H).\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 141.8, 139.3, 59.7, 25.7 (3C), 18.2, -5.6 (2C). HRMS: Calculated for \([C\text{\textsubscript{9}}H\text{\textsubscript{19}}NNaO\text{\textsubscript{3}}Si]^{+}\): 240.1026; found: 240.1030.

4. Preparation of the nucleophiles

Nucleophiles 1a-b are commercially available and were used as received. Nucleophile 1c was synthesized according to the literature procedure.\(^3\)

\[1\text{-}(2\text{-}Oxooxazolidin-3\text{-}yl)\text{butane-1,3-dione (1d)} \]

The procedure reported by M. P. Doyle et al.\(^4\) was applied. n-BuLi (6.25 mL of the 1.6 M solution in hexane, 10.0 mmol) was added drop-
wise to a stirring solution of 2-oxazolidinone (1.67 g, 9.5 mmol) in dry THF (20 mL) at -78 °C (Note: The oxazolidinone was not fully soluble). The mixture was then allowed to warm up to -40 °C. After recoling to -78 °C, the lithiated oxazolidinone was treated with a solution of diketene (0.87 mL, 11.0 mmol) in THF (5 mL). After the addition was complete, the mixture was maintained at -78 °C for additionally 30 min before slowly warming up to rt. The reaction is quenched with NH₄Cl (sat.), extracted with CH₂Cl₂, dried and concentrated in vacuo. Subsequent FC (silica gel, 2:1 pentane/EtOAc) afforded 2d in 74% yield as an off-white solid. ¹H NMR (400 MHz, CDCl₃). Keto/enol ratio: 7:1; δ ppm 6.33* (s, 1H), 4.33+ (t, J = 8.12 Hz, 4H), 3.93+ (t, J = 8.22 Hz, 4H), 3.90 (s, 2H), 2.15 (s, 3H), 1.93* (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.0, 166.2+ (2C), 153.5+ (2C), 89.1*, 62.1, 61.8*, 50.6, 41.8, 41.7*, 29.8, 21.7*. HRMS: Calculated for [C₇H₉NNaO₄]⁺: 194.0424; found: 194.0430. M.p. (pentane/EtOAc): 54 °C.

General procedure: The protocol reported by C. Marchi et al. was used for preparation of nucleophiles 1e-j.⁵

![Diagram](https://via.placeholder.com/150)

Meldrum’s acid (2.00 g, 13.8 mmol), dimethylaminopyridine (0.34, 2.7 mmol) and anhyd. pyridine (2.23 mL, 27.6 mmol) were dissolved in anhyd. CH₂Cl₂ (50 mL) with stirring under N₂ atmosphere. The solution was cooled to 0 °C and the corresponding alkanoyl chloride (20.7 mmol) was added. The mixture was stirred for 2 h at 0 °C and slowly allowed to warm up to rt. After stirring for additionally 15 h, the solvent was evaporated and oxazolidin-2-one (1.8 g, 20.7 mmol) and anhyd. toluene (50 mL) were added. The mixture was refluxed for 5 h and concentrated in vacuo. FC on silica-gel afforded the pure products. Solid products 1d-i were further recrystallized from pentane/EtOAc.

1-(2-Oxooxazolidin-3-yl)hexane-1,3-dione (1e). Following the general procedure 1e was isolated by FC (petane/EtOAc 2:1) in 92% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: >20:1; δ ppm 6.49* (s, 1H), 4.44* (t, $J = 8.12$ Hz, 4H), 4.07* (t, $J = 8.14$ Hz, 4H), 4.03 (s, 2H), 2.53 (t, $J = 7.33$ Hz, 2H), 2.27* (t, $J = 7.35$ Hz, 2H) 1.63* (tq, $J = 7.39$, 7.39 Hz, 4H), 0.93* (t, $J = 7.42$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 203.2, 166.6 (2C), 153.6 (2C), 88.8*, 62.1, 61.8*, 50.1, 44.5, 42.0, 41.8*, 37.5*, 19.7*, 16.6, 13.4*, 13.4. HRMS: Calculated for [C$_9$H$_{13}$NNaO$_4$]$^+$: 222.0737; found: 222.0740. M.p. (pentane/EtOAc): 58 °C.

1-(2-Oxooxazolidin-3-yl)octane-1,3-dione (1f). Following the general procedure 1f was isolated by FC (pentane/EtOAc 2:1) in 98% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: 11:1; δ ppm 6.45* (s, 1H), 4.41* (t, $J = 8.08$ Hz, 4H), 4.04* (t, $J = 8.11$ Hz, 4H), 4.00 (s, 2H), 2.52 (t, $J = 7.43$ Hz, 2H), 2.25* (t, $J = 7.62$ Hz, 2H), 1.65-1.51* (m, 4H), 1.36-1.19* (m, 8H), 0.86* (t, $J = 6.79$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 203.4, 166.7 (2C), 153.6 (2C), 88.8*, 62.2, 61.9*, 50.1, 44.5, 42.1, 41.9*, 35.7*, 31.2*, 31.1, 26.1*, 22.9, 22.3, 22.3*, 13.8*, 13.8. HRMS: Calculated for [C$_{11}$H$_{17}$NNaO$_4$]$^+$: 250.1050; found: 250.1057. M.p. (pentane/EtOAc): 44 °C.

1-(2-Oxooxazolidin-3-yl)nonane-1,3-dione (1g). Following the general procedure 1g was isolated by FC (pentane/EtOAc 2:1) in 76% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: >20:1; δ ppm 6.48* (s, 1H), 4.44* (t, $J = 8.11$ Hz, 4H), 4.07* (t, $J = 8.31$ Hz, 4H), 4.03 (s, 2H), 2.55 (t, $J = 7.40$ Hz, 2H), 2.28* (t, $J = 7.29$ Hz, 2H), 1.65-1.54* (m, 4H), 1.36-1.22* (m, 12H), 0.87* (t, $J = 6.44$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 203.4, 166.6 (2C), 153.6 (2C), 88.7*, 62.1, 61.8*, 50.1, 42.7, 42.0, 41.9*, 35.7*, 31.4, 31.3*, 28.6*, 28.5, 26.7*, 23.1, 22.3* (2C), 13.9* (2C). HRMS: Calculated for [C$_{12}$H$_{19}$NNaO$_4$]$^+$: 264.1206; found: 264.1207. M.p. (pentane/EtOAc): 50 °C.

1-(2-Oxooxazolidin-3-yl)decane-1,3-dione (1h). Following the general procedure 1h was isolated by
FC (pentane/EtOAc 2:1) in 51% yield. \(^1H \) NMR (400 MHz, CDCl\(_3\)). Keto/enol ratio: 1.2:1; δ ppm 5.98* (s, 1H), 4.41 (t, \(J = 8.10 \) Hz, 2H), 4.04 (d, \(J = 8.12 \) Hz, 2H), 4.00 (s, 2H), 3.63-3.55* (m, 4H), 2.52 (t, \(J = 7.44 \) Hz, 2H), 2.18* (t, \(J = 7.61 \) Hz, 2H), 1.68-1.50* (m, 4H), 1.35-1.19* (m, 16H), 0.90-0.80* (m, 6H). \(^13C \) NMR (100 MHz, CDCl\(_3\)) (Individual assignment of the two forms, keto and enol, not possible due to discrimination difficulties) δ 203.4, 173.3, 166.7, 153.6, 88.8, 62.2, 50.2, 44.1, 42.9, 42.1, 41.0, 36.6, 31.6, 29.1, 29.0, 29.0, 28.9, 25.6, 23.3, 22.5, 14.0. HRMS: Calculated for [C\(_{13}\)H\(_{21}\)NNaO\(_4\)]\(^+\): 278.1363; found: 278.1359. M.p. (pentane/EtOAc): 46 °C.

6-Methyl-1-(2-oxooxazolidin-3-yl)heptane-1,3-dione (1i). Following the general procedure 1i was isolated by FC (pentane/EtOAc 2:1) in 41% yield. \(^1H \) NMR (400 MHz, CDCl\(_3\)). Keto/enol ratio: 12:1; δ ppm 6.49* (s, 1H), 4.44 (t, \(J = 8.12 \) Hz, 4H), 4.07 (t, \(J = 8.15 \) Hz, 4H), 4.04 (s, 2H), 2.55 (t, \(J = 7.62 \) Hz, 2H), 2.29* (t, \(J = 7.90 \) Hz, 2H), 1.61-1.44* (m, 6H), 0.91 (d, \(J = 6.49 \) Hz, 6H), 0.89 (d, \(J = 6.39 \) Hz, 6H). \(^13C \) NMR (100 MHz, CDCl\(_3\)) δ 203.5, 166.6, 153.6, 62.2, 50.1, 42.0, 40.8, 31.9, 27.4, 22.2 (2C). HRMS: Calculated for [C\(_{11}\)H\(_{17}\)NNaO\(_4\)]\(^+\): 250.1050; found: 250.1048. M.p. (pentane/EtOAc): 61 °C.

1-(2-Oxooxazolidin-3-yl)hept-6-ene-1,3-dione (1j). Following the general procedure 1j was isolated by FC (pentane/EtOAc 2:1) in 65% yield as a yellow oil. \(^1H \) NMR (400 MHz, CDCl\(_3\)). Keto/enol ratio: 11:1; δ ppm 6.50* (s, 1H), 5.89-5.73* (m, 2H), 5.13-4.95* (m, 4H), 4.44 (t, \(J = 8.13 \) Hz, 4H), 4.07 (t, \(J = 8.10 \) Hz, 4H), 4.03 (s, 2H), 3.03* (t, \(J = 7.38 \) Hz, 2H), 2.66 (t, \(J = 7.40 \) Hz, 2H), 2.46-2.29* (m, 4H). \(^13C \) NMR (100 MHz, CDCl\(_3\)) δ 202.4, 166.5* (2C), 153.7* (2C), 136.5* (2C), 115.4* (2C), 89.0*, 62.2, 62.0*, 50.2, 42.4*, 42.1, 41.9*, 41.7, 27.1* (2C). HRMS: Calculated for [C\(_{10}\)H\(_{13}\)NNaO\(_4\)]\(^+\): 234.0737; found: 234.0744.
5. General procedure for the conjugate addition

An ordinary vial equipped with a magnetic stirring bar was charged with the nitroalkene 2 (0.2 mmol, 43.5 mg, 1 equiv), the nucleophile 1 (0.6 mmol, 3 equiv) and toluene (0.2 mL for [2] = 1 M; 0.4 mL for [2] = 0.5 M). After stirring at the given temperature for 5 min., the catalyst 3 (0.02 mmol, 10 mol%) was added to the mixture. The stirring was maintained until completion of the reaction (monitored by thin layer chromatography; usually 24-48 h). The crude reaction mixture was directly charged on Iatrobeads and subjected to FC. (Note: In some of the screening entries, solvents other than toluene were used.)

(3S)-Methyl 2-acetyl-4-(tert-butyldimethylsilyloxy)-3-(nitromethyl)butanoate (4a). Following the general procedure 4a was isolated by FC (pentane/EtOAc 4:1) in 62% (CH₂Cl₂ as solvent) or 88% (toluene as solvent) yield as a yellow oil. ¹H NMR (400 MHz, CDCl₃) (d.r.: 1:1; No individual assignment of the two diastereomers is made) δ ppm 4.63-4.56 (m, 4H), 3.94-3.83 (m, 2H), 3.77 (s, 3H), 3.75 (s, 3H), 3.70-3.61 (m, 4H), 3.16-3.01 (m, 2H), 2.32 (s, 3H), 2.31 (s, 3H), 0.88-0.85 (m, 18H), 0.04-0.02 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 201.7, 201.2, 168.4, 168.4, 74.1, 74.1, 61.5, 61.3, 57.3, 57.1, 52.8, 52.8, 39.0, 38.7, 30.6, 30.3, 25.7 (3C), 25.7 (3C), 18.2 (2C; Note: overlap of signals from the two diastereomers), -5.8 (2C), -5.8 (2C). HRMS: Calculated for [C₁₄H₂₇NNaO₆Si]⁺: 356.1500; found: 356.1504. [α]D²⁰: +2.6 (c = 0.39, CHCl₃).

(3S)-tert-Butyl 2-acetyl-4-(tert-butyldimethylsilyloxy)-3-(nitromethyl)butanoate (4b). Following the general procedure 4b was isolated by FC (pentane/EtOAc 4:1) in 37% yield as a yellow oil. ¹H NMR (400 MHz, CDCl₃) (d.r.: 1:1; No individual assignment of the two diastereomers was made) δ ppm 4.62-4.54 (m, 4H), 3.78 (dd, J = 14.71, 7.99 Hz, 2H), 3.71-3.57 (m, 4H), 3.11-2.96 (m, 2H), 2.30 (s, 6H), 1.47-1.46⁺ (m, 18H), 0.89-0.87⁺ (m, 18H), 0.05-0.01⁺ (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 201.7, 166.9, 166.9, 83.1, 83.1, 74.3, 74.1, 61.5, 61.0, 58.5, 58.2, 39.0,

S7
38.7, 30.4, 30.3, 27.8 (3C), 27.8 (3C), 25.7 (3C), 25.7 (3C), 18.2 (2C; Note: Overlap of signals from both diastereomers), -5.7 (4C; Note: Overlap of signals from both diastereomers). HRMS: Calculated for [C\textsubscript{17}H\textsubscript{33}N\textsubscript{2}O\textsubscript{6}Si+]: 398.1969; found: 398.1970. \([\alpha]\text{D}\text{rt}: +4.0 (c = 0.58, CHCl\textsubscript{3}).

2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)butane-1,3-dione (4d). Following the general procedure 4d was isolated by FC (pentane/EtOAc 2:1) in 84% yield as a yellow oil. \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}). d.r.: 4:1; \(\delta\) ppm 5.10 (d, \(J = 4.04\) Hz, 1H), 5.03* (d, \(J = 4.77\) Hz, 1H), 4.72 (dd, \(J = 14.20, 8.13\) Hz, 1H), 4.64-4.57* (m, 1H), 4.55-4.38* (m, 6H), 4.15-3.97* (m, 4H), 3.83* (dd, \(J = 10.56, 7.26\) Hz, 1H), 3.79 (dd, \(J = 10.06, 5.90\) Hz, 1H), 3.71-3.64* (m, 2H), 2.39 (s, 3H), 2.32* (s, 3H), 0.91-0.82* (m, 18H), 0.07-(-0.01)* (m, 12H). \(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 203.2, 202.3*, 168.0*, 167.9, 153.5, 153.4*, 74.5*, 74.3, 62.4, 62.2* (2C), 61.4*, 56.9, 56.4*, 42.5*, 42.4, 39.7*, 39.2, 30.0*, 29.5, 25.7* (3C), 25.6 (3C), 18.1* (2C), -5.7, -5.7*, -5.7*, -5.8. HRMS: Calculated for [C\textsubscript{16}H\textsubscript{28}N\textsubscript{2}O\textsubscript{7}Si+]: 411.1558; found: 411.1563. \([\alpha]\text{D}\text{rt}: +34.0 (c = 1.11, CHCl\textsubscript{3}).

2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)hexane-1,3-dione (4e). Following the general procedure 4e was isolated by FC (pentane/EtOAc 2:1) in 89% yield as a yellow oil. \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}). d.r.: 4:1; \(\delta\) ppm 5.11 (d, \(J = 4.11\) Hz, 1H), 5.04* (d, \(J = 4.92\) Hz, 1H), 4.71 (dd, \(J = 14.20, 8.29\) Hz, 1H), 4.60* (dd, \(J = 6.40, 1.14\) Hz, 1H), 4.52-4.36* (m, 6H), 4.10-3.95* (m, 4H), 3.82* (dd, \(J = 10.45, 7.41\) Hz, 1H), 3.76 (dd, \(J = 10.06, 5.82\) Hz, 1H), 3.69-3.59* (m, 2H), 3.20-3.09* (m, 2H), 2.78-2.47* (m, 4H), 1.61* (tq, \(J = 7.42, 7.42\) Hz, 4H), 0.95-0.82* (m, 24H), 0.04-0.00 (m, 12H). \(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}) \(\delta\) 205.3, 204.2*, 168.1*, 168.0, 153.4, 153.3*, 74.6*, 74.3, 62.5, 62.2* (2C), 61.4*, 56.4, 55.8*, 44.3*, 43.8, 42.5*, 42.4, 39.8*, 39.5, 25.7* (3C), 25.6 (3C), 18.1*, 18.1, 16.6* (2C), 13.5* (2C), -5.7, -
5.7*, -5.7*, -5.8. HRMS: Calculated for [C_{18}H_{32}N_{2}NaO_{7}Si]^+: 439.1871; found: 439.1877. \[\alpha\]_{D}^{rt} = +32.7 (c = 1.48, CHCl_{3}).

2-((S)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)hexane-1,3-dione (ent-4e).

Following the general procedure ent-4e was isolated by FC (pentane/EtOAc 2:1) in 92% yield as a yellow oil. \(^1\)H NMR (400 MHz, CDCl_{3}). d.r.: 4:1; \(\delta\) ppm 5.11 (d, \(J = 4.11\) Hz, 1H), 5.04* (d, \(J = 4.92\) Hz, 1H), 4.71 (dd, \(J = 14.20, 8.29\) Hz, 1H), 4.60* (dd, \(J = 6.40, 1.14\) Hz, 1H), 4.52-4.36 (m, 6H), 4.10-3.95 (m, 4H), 3.82* (dd, \(J = 10.45, 7.41\) Hz, 1H), 3.76 (dd, \(J = 10.06, 5.82\) Hz, 1H), 3.69-3.59 (m, 2H), 3.20-3.09 (m, 2H), 2.78-2.47 (m, 4H), 1.61 (tq, \(J = 7.42, 7.42\) Hz, 4H), 1.36-1.20 (m, 8H), 0.91-0.82 (m, 24H), 0.05-0.01 (m, 12H). \(^{13}\)C NMR (100 MHz, CDCl_{3}) \(\delta\) 205.3, 204.2*, 168.1*, 168.0, 153.4, 153.3*, 74.6*, 74.3, 62.5, 62.2* (2C), 61.4*, 56.4, 55.8*, 44.3*, 43.8, 42.5*, 42.4, 39.8*, 39.5, 25.7* (3C), 25.6 (3C), 18.1*, 18.1, 16.6* (2C), 13.5* (2C), -5.7, -5.7*, -5.7*, -5.8. HRMS: Calculated for [C_{18}H_{32}N_{2}NaO_{7}Si]^+: 439.1871; found: 439.1877. \[\alpha\]_{D}^{rt} = -30.5 (c = 1.47, CHCl_{3}).

2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)octane-1,3-dione (4f).

Following the general procedure 4f was isolated by FC (pentane/EtOAc 2:1) in 62% yield as a yellow oil. \(^1\)H NMR (400 MHz, CDCl_{3}). d.r.: 3:1; \(\delta\) ppm 5.12 (d, \(J = 4.16\) Hz, 1H), 5.04* (d, \(J = 4.94\) Hz, 1H), 4.70 (dd, \(J = 14.19, 8.28\) Hz, 1H), 4.60* (dd, \(J = 6.41, 1.84\) Hz, 1H), 4.52-4.38 (m, 6H), 4.09-3.96 (m, 4H), 3.86-3.59 (m, 4H), 3.19-3.09 (m, 2H), 2.79-2.47 (m, 4H), 1.58 (tq, \(J = 7.37, 7.37\) Hz, 4H), 1.36-1.20 (m, 8H), 0.91-0.82 (m, 24H), 0.05-0.01 (m, 12H). \(^{13}\)C NMR (100 MHz, CDCl_{3}) \(\delta\) 205.4, 204.4*, 168.1*, 168.0, 153.4, 153.3*, 74.6*, 74.3, 62.5, 62.2* (2C), 61.4*, 56.4, 55.8*, 44.3*, 43.8, 42.4*, 42.4, 41.9, 39.9*, 39.5, 31.0* (2C), 25.7* (3C), 22.8* (2C), 22.4* (2C), 18.1*, 18.1, 13.8* (2C), -5.7, -5.7*, -5.7*, -5.8. HRMS: Calculated for [C_{20}H_{36}N_{2}NaO_{7}Si]^+: 467.2184; found: 467.2174. \[\alpha\]_{D}^{rt} = +30.7 (c = 2.50, CHCl_{3}).
2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)nonane-1,3-dione (4g). Following the general procedure 4g was isolated by FC (pentane/EtOAc 3:1) in 77% yield as a yellow oil. ^1H NMR (400 MHz, CDCl₃). d.r.: 3.5:1; δ ppm 5.12 (d, J = 4.05 Hz, 1H), 5.04* (d, J = 4.77 Hz, 1H), 4.71 (dd, J = 14.20, 8.25 Hz, 1H), 4.60* (dd, J = 6.34, 1.20 Hz, 1H), 4.52-4.36^+ (m, 6H), 4.15-3.95^+ (m, 4H), 3.82* (dd, J = 10.3, 7.4 Hz, 1H), 3.76 (dd, J = 10.07, 5.81 Hz, 1H), 3.70-3.58^+ (m, 2H), 3.19-3.09^+ (m, 2H), 2.79-2.48^+ (m, 4H), 1.66-1.50^+ (m, 4H), 1.36-1.20^+ (m, 12H), 0.93-0.80^+ (m, 24H), 0.08--(-0.02)^+ (m, 12H). ^13C NMR (100 MHz, CDCl₃) δ 205.5, 204.4*, 168.1*, 168.0, 153.4, 153.3*, 74.6*, 74.3, 62.5, 62.2^+ (2C), 61.4*, 56.4, 55.8^*, 42.5*, 42.4, 42.0, 39.9*, 39.5, 31.6^+ (2C), 29.0^+ (2C), 28.9^+ (2C), 25.7^* (3C), 25.7 (3C), 23.2^+ (2C), 22.6^+ (2C), 18.1^*, 18.1, 14.0^+ (2C), -5.7, -5.7^*, -5.7*, -5.8. HRMS: Calculated for [C₂₁H₃₈N₂NaO₇Si]⁺: 481.2340; found: 481.2346. [α]Drt: +26.5 (c = 1.20, CHCl₃).

2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)decane-1,3-dione (4h). Following the general procedure 4h was isolated by FC (pentane/EtOAc 3:1) in 72% yield as a yellow oil. ^1H NMR (400 MHz, CDCl₃). d.r.: 3:1; δ ppm 5.13 (d, J = 4.13 Hz, 1H), 5.05* (d, J = 4.91 Hz, 1H), 4.71 (dd, J = 14.19, 8.30 Hz, 1H), 4.61* (dd, J = 6.41, 2.19 Hz, 1H), 4.53-4.38^+ (m, 6H), 4.09-3.97^+ (m, 4H), 3.86-3.59^+ (m, 4H), 3.21-3.08^+ (m, 2H), 2.78-2.48^+ (m, 4H), 1.66-1.51^+ (m, 4H), 1.33-1.21^+ (m, 16H), 0.89-0.83^+ (m, 24H), 0.04-0.01^+ (m, 12H). ^13C NMR (100 MHz, CDCl₃) δ 205.4, 204.4^*, 168.1^*, 168.0, 153.4, 153.3*, 74.7*, 74.3, 62.5, 62.2^+ (2C), 61.4*, 56.4, 55.8^*, 42.5^*, 42.4, 42.0, 39.9*, 39.5, 31.5, 31.4^* 28.7^*, 28.6, 25.7^* (3C), 25.6 (3C), 23.1^+ (2C), 22.4^+ (2C), 18.1^+ (2C), 14.2^*, 14.0, -5.7, -5.7^*, -5.7^*, -5.8. HRMS: Calculated for [C₂₂H₄₀N₂NaO₇Si]⁺: 495.2497 found: 495.2493. [α]Drt: +31.0 (c = 2.50, CHCl₃).
2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-6-methyl-1-(2-oxooxazolidin-3-yl)heptane-1,3-dione (4i). Following the general procedure 4i was isolated by FC (pentane/EtOAc 2:1) in 66% yield as a yellow oil.

1H NMR (400 MHz, CDCl$_3$). d.r.: 2.5:1; δ ppm 5.14 (d, $J = 4.04$ Hz, 1H), 5.06* (d, $J = 4.50$ Hz, 1H), 4.72 (dd, $J = 14.21$, 8.24 Hz, 1H), 4.62* (dd, $J = 6.20$, 1.82 Hz, 1H), 4.54-4.37* (m, 6H), 4.08-3.98* (m, 4H), 3.83* (dd, $J = 10.33$, 7.00 Hz, 1H), 3.77 (dd, $J = 10.08$, 5.99 Hz, 1H), 3.70-3.59* (m, 2H), 3.20-3.11* (m, 2H), 2.80-2.49* (m, 4H), 1.61-1.41* (m, 6H), 0.94-0.84* (m, 30H), 0.07-0.01* (m, 12H).

13C NMR (100 MHz, CDCl$_3$) δ 205.7, 204.6*, 168.2*, 168.0, 153.4, 153.3*, 74.7*, 74.3, 62.6, 62.2* (2C), 61.4*, 56.5, 55.9*, 42.5*, 42.4, 40.5*, 40.0, 39.9*, 39.5, 32.0*, 32.0, 27.4* (2C), 25.7* (3C), 25.7 (3C), 22.3* (2C), 22.3 (2C), 18.1*, 18.1, -5.6, -5.7*, -5.7*, -5.7. HRMS: Calculated for [C$_{20}$H$_{36}$N$_2$NaO$_7$Si]$^+$: 467.2184; found: 467.2192. [α]$_D^{23}$: +31.2 (c = 1.30, CHCl$_3$).

2-((R)-1-(tert-Butyldimethylsilyloxy)-3-nitropropan-2-yl)-1-(2-oxooxazolidin-3-yl)hept-6-ene-1,3-dione (4j). Following the general procedure 4j was isolated by FC (hexane/EtOAc 2:1) in 84% yield as a yellow oil.

1H NMR (400 MHz, CDCl$_3$). d.r.: 2.5:1; δ ppm 5.84-5.72* (m, 2H), 5.12 (d, $J = 4.17$ Hz, 1H), 5.06* (d, $J = 4.99$ Hz, 1H), 5.08-4.96* (m, 4H), 4.71 (dd, $J = 14.25$, 8.23 Hz, 1H), 4.61* (t, $J = 5.92$ Hz, 1H), 4.52-4.39* (m, 6H), 4.11-3.97* (m, 4H), 3.82* (dd, $J = 10.46$, 7.23 Hz, 1H), 3.77 (dd, $J = 10.08$, 5.76 Hz, 1H), 3.69-3.61* (m, 2H), 3.21-3.11* (m, 2H), 2.91-2.63* (m, 4H), 2.41-2.27* (m, 4H), 0.89-0.84* (m, 18H), 0.04-0.01* (m, 12H).

13C NMR (100 MHz, CDCl$_3$) 204.5, 203.5*, 168.0*, 167.9, 153.5, 153.3*, 136.5, 136.6*, 115.7, 115.7*, 74.6*, 74.2, 62.5, 62.2* (2C), 61.4*, 56.4, 55.8*, 42.5*, 42.4, 41.6*, 41.1, 39.9*, 39.4, 27.2* (2C), 25.7* (3C), 25.7 (3C), 18.1*, 18.1, -5.6, -5.7*, -5.7*, -5.8. HRMS: Calculated for [C$_{19}$H$_{32}$N$_2$NaO$_7$Si]$^+$: 451.1871; found: 451.1887. [α]$_D^{23}$: +34.1 (c = 0.52, CHCl$_3$).
6. General procedure for the deprotection/cyclization

An ordinary vial equipped with a magnetic stirring bar was charged with the Michael adducts 4 (0.1 mmol). 2 M HCl in EtOAc (0.2 mL), freshly prepared by slow addition of dry MeOH (0.4 mmol) to a stirring solution of AcCl (0.4 mmol) in dry EtOAc (0.2 mL), was then added to the vial followed by the addition of H$_2$O (0.5 mmol, 9 μL). The reaction was monitored by TLC. Upon completion (usually 90 to 150 min), the mixture was diluted with H$_2$O (0.4 mL) and neutralized by careful addition of NaHCO$_3$ until no more gas evolution occurred. The pH of the mixture was controlled by universal pH-paper before extracting with EtOAc (3 x 1 mL). The combined organic layers were dried over MgSO$_4$, concentrated in vacuo and subjected to FC on Iatrobeads.

(S,Z)-Methyl 3-hydroxy-2-(1-hydroxy-3-nitropropan-2-yl)but-2-enoate (4’a). Following the general procedure 4’a was isolated by FC (pentane/EtOAc 2:1) in 84% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ ppm 4.84 (dd, $J = 13.29$, 3.16 Hz, 1H), 4.58 (t, $J = 10.00$ Hz, 1H), 4.43 (ddd, $J = 10.25$, 4.62, 1.89 Hz, 1H), 4.37-4.29 (m, 1H), 4.00-3.87 (m, 1H), 3.74 (s, 3H), 2.23 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 172.0, 165.3, 100.7, 76.7, 74.1, 51.2, 41.2, 14.5. HRMS: Calculated for [C$_8$H$_{11}$NNaO$_5$]$^+$ (M+Na$^+$-H$_2$O): 224.0531; found: 224.0529. The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 9.9 min, τ_{minor} = 10.7 min (81% ee). [α]$^D_{\text{rt}}$: +74.6 (c = 0.30, CHCl$_3$).

(S,Z)-tert-Butyl 3-hydroxy-2-(1-hydroxy-3-nitropropan-2-yl)but-2-enoate (4’b). Following the general procedure 4’b was isolated by FC (pentane/EtOAc 2:1) in 61% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ ppm 4.83 (dd, $J = 13.14$, 3.27 Hz, 1H), 4.53 (t, $J = 9.89$ Hz, 1H), 4.39 (dd, $J = 10.24$, 4.71 Hz, 1H), 4.33 (dd, $J = 13.14$, 10.07 Hz, 1H), 3.92-3.83 (m, 1H), 2.20-2.16 (m, 3H), 1.50 (s, 9H). 13C NMR (100 MHz, CDCl$_3$) δ 170.6, 164.3, 102.2, 80.6, 76.9, 73.7, 41.7, 28.351 (3C), 14.429. HRMS: Calculated for [C$_{11}$H$_{17}$NNaO$_5$]$^+$ (M+Na$^+$-H$_2$O): 266.0999; found: 266.1002. The ee
was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; $\tau_{\text{major}} = 6.4$ min, $\tau_{\text{minor}} = 6.8$ min (76% ee). $[\alpha]_D^{\text{rt}}: +85.3$ (c = 0.30, CHCl$_3$).

\[3R,4R\]-3-Acetyl-4-(nitromethyl)dihydrofuran-2(3H)-one (5a).

Following the general procedure 5a was isolated by FC (Pentane/EtOAc 2:1) in 70% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: 2.5:1; δ ppm 11.25* (bs, 1H), 4.66-4.43+ (m, 6H), 4.38* (dd, $J = 10.38$, 2.20 Hz, 1H), 4.14 (dd, $J = 9.62$, 7.41 Hz, 1H), 3.88-3.73+ (m, 2H), 3.63 (d, $J = 8.11$ Hz, 1H), 2.50 (s, 3H), 2.08* (s, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 198.2, 174.8*, 171.5*, 169.9, 94.2*, 76.6*, 75.0, 69.9*, 68.7, 55.7, 35.8*, 34.7, 29.4, 19.0*. HRMS: Calculated for [C$_7$H$_9$NO$_5$Na]$^+$: 210.0373; found: 210.0367. The ee was determined by GC using a chiral Chrompack CP Chiralsil-Dex Cβ column. Temperature program: from 70 °C to 160 °C at a rate of 10 °C/min, maintaining the temperature for 20 minutes, then to 180 °C at a rate of 10 °C/min. $\tau_{\text{major}} = 19.1$ min, $\tau_{\text{minor}} = 18.4$ min (84% ee). $[\alpha]_D^{\text{rt}}: -24.7$ (c = 0.45, CHCl$_3$).

\[3R,4R\]-3-Butyryl-4-(nitromethyl)dihydrofuran-2(3H)-one (5b).

Following the general procedure 5b was isolated by FC (Pentane/EtOAc 2:1) in 71% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: 15:1; only the keto form is characterized; δ ppm 4.62 (dd, $J = 9.54$, 8.03 Hz, 1H), 4.59-4.46 (m, 2H), 4.13 (dd, $J = 9.59$, 7.13 Hz, 1H), 3.86-3.76 (m, 1H), 3.61 (d, $J = 7.70$ Hz, 1H), 3.01 (dt, $J = 18.16$, 7.32 Hz, 1H), 2.67-2.57 (m, 1H), 1.66 (tq, $J = 7.50$, 7.50 Hz, 2H), 0.95 (t, $J = 7.42$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 200.6, 170.1, 75.1, 68.8, 55.1, 44.1, 34.9, 16.6, 13.4. HRMS: Calculated for [C$_9$H$_{13}$NO$_5$Na]$^+$: 238.0686; found: 238.0679. The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{\text{major}} = 47.5$ min, $\tau_{\text{minor}} = 39.6$ min (90% ee). $[\alpha]_D^{\text{rt}}: -11.7$ (c = 0.26, CHCl$_3$).
(3R,4R)-3-Butyryl-4-(nitromethyl)dihydrofuran-2(3H)-one (ent-5b). Following the general procedure ent-5b was isolated by FC (pentane/EtOAc 2:1) in 68% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: 15:1; only the keto form is characterized; δ ppm 4.62 (dd, J = 9.54, 8.03 Hz, 1H), 4.59-4.46 (m, 2H), 4.13 (dd, J = 9.59, 7.13 Hz, 1H), 3.86-3.76 (m, 1H), 3.61 (d, J = 7.70 Hz, 1H), 3.01 (dt, J = 18.16, 7.32 Hz, 1H), 2.67-2.57 (m, 1H), 1.66 (tq, J = 7.50, 7.50 Hz, 2H), 0.95 (t, J = 7.42 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 200.6, 170.1, 75.1, 68.8, 55.1, 44.1, 34.9, 16.6, 13.4. HRMS: Calculated for [C$_9$H$_{13}$NO$_5$Na]$^+$: 238.0686; found: 238.0679. The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 39.6 min, τ_{minor} = 47.5 min (86% ee). [α]$_D^{23}$: +12.2 (c = 0.29, CHCl$_3$).

(3R,4R)-3-Hexanoyl-4-(nitromethyl)dihydrofuran-2(3H)-one (5c). Following the general procedure 5c was isolated by FC (pentane/EtOAc 3:1) in 76% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: >10:1; only the keto form is characterized; δ ppm 4.62 (dd, J = 9.58, 8.01 Hz, 1H), 4.58-4.44 (m, 2H), 4.13 (dd, J = 9.61, 7.10 Hz, 1H), 3.86-3.75 (m, 1H), 3.61 (d, J = 7.71 Hz, 1H), 3.02 (dt, J = 18.10, 7.37 Hz, 1H), 2.64 (dt, J = 18.08, 7.29 Hz, 1H), 1.67-1.57 (m, 2H), 1.39-1.22 (m, 4H), 0.89 (t, J = 6.89 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 200.7, 170.1, 75.1, 68.8, 55.1, 44.1, 34.9, 31.0, 22.8, 22.4, 13.9. HRMS: Calculated for [C$_{11}$H$_{17}$NO$_5$Na]$^+$: 266.1004; found: 266.0996. The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 45.3 min, τ_{minor} = 40.4 min (83% ee). [α]$_D^{23}$: -14.3 (c = 0.78, CHCl$_3$).

(3R,4R)-3-Heptanoyl-4-(nitromethyl)dihydrofuran-2(3H)-one (5d). Following the general procedure 5d was isolated by FC (pentane/EtOAc 3:1) in 80% yield. 1H NMR (400 MHz, CDCl$_3$). Keto/enol ratio: >20:1; only the keto form is characterized; δ ppm 4.62 (dd, J = 9.59, 7.99 Hz, 1H), 4.57-4.47 (m, 2H), 4.13 (dd, J = 9.61, 7.11 Hz, 1H), 3.87-3.76 (m, 1H), 3.61 (d, J = 7.71 Hz, 1H), 3.02 (dt, J = 18.11, 7.49 Hz, 1H), 2.64 (dt, J = 18.07, 7.10 Hz, 1H).
Hz, 1H), 1.68-1.55 (m, 2H), 1.38-1.23 (m, 6H), 0.88 (t, J = 6.73 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 200.7, 170.1, 75.1, 68.8, 55.1, 42.3, 34.9, 31.5, 28.5, 23.1, 22.4, 14.0. HRMS: Calculated for [C$_{12}$H$_{19}$NO$_5$Na]$^+$: 280.1155; found: 280.1154. The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 54.3 min, τ_{minor} = 48.6 min (85% ee). [α]$_D^{\text{rt}}$: -13.3 (c = 0.15, CHCl$_3$).

(3R,4R)-4-(Nitromethyl)-3-octanoyldihydrofuran-2(3H)-one (5e). Following the general procedure 5e was isolated by FC (pentane/EtOAc 3:1) in 75% yield. 1H NMR (400 MHz, CDCl$_3$) δ ppm 4.67-4.37 (m, 3H), 4.13 (dd, J = 9.60, 7.11 Hz, 1H), 3.87-3.76 (m, 1H), 3.61 (d, J = 7.72 Hz, 1H), 3.02 (dt, J = 18.09, 7.38 Hz, 1H), 2.64 (dt, J = 18.08, 7.37 Hz, 1H), 1.69-1.56 (m, 2H), 1.35-1.24 (m, 8H), 0.88 (t, J = 5.80 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 200.7, 170.1, 75.1, 68.8, 55.1, 42.3, 34.9, 31.6, 29.0, 28.8, 23.2, 22.6, 14.1. HRMS: Calculated for [C$_{13}$H$_{21}$NO$_5$Na]$^+$: 294.1312; found: 294.1316. The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 43.3 min, τ_{minor} = 38.8 min (84% ee). [α]$_D^{\text{rt}}$: -20.8 (c = 0.60, CHCl$_3$).

(3R,4R)-3-(4-Methylpentanoyl)-4-(nitromethyl)dihydrofuran-2(3H)-one (5f). Following the general procedure 5f was isolated by FC (pentane/EtOAc 2:1) in 55% yield. 1H NMR (400 MHz, CDCl$_3$) δ ppm 4.62 (dd, J = 9.49, 8.07 Hz, 1H), 4.58-4.46 (m, 2H), 4.13 (dd, J = 9.56, 7.11 Hz, 1H), 3.88-3.75 (m, 1H), 3.63 (d, J = 7.69 Hz, 1H), 3.08-2.98 (m, 1H), 2.71-2.59 (m, 1H), 1.67-1.45 (m, 3H), 0.91 (d, J = 6.12 Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 200.9, 170.2, 75.1, 68.8, 55.1, 40.4, 34.9, 31.9, 27.5, 22.4, 22.2. HRMS: Calculated for [C$_{11}$H$_{17}$NO$_5$Na]$^+$: 266.0999; found: 266.0994. The ee was determined by HPLC using Chiralcel OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τ_{major} = 55.5 min, τ_{minor} = 48.4 min (82% ee). [α]$_D^{\text{rt}}$: -11.3 (c = 0.53, CHCl$_3$).
(3R,4R)-4-(Nitromethyl)-3-pent-4-enoyldihydrofuran-2(3H)-one (5g). Following the general procedure 5g was isolated by FC (pentane/EtOAc 3:1) in 68% yield. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) ppm 5.88-5.72 (m, 1H), 5.12-4.99 (m, 2H), 4.68-4.45 (m, 3H), 4.14 (dd, \(J = 9.62, 7.29\) Hz, 1H), 3.87-3.76 (m, 1H), 3.62 (d, \(J = 7.92\) Hz, 1H), 3.16 (dt, \(J = 18.03, 7.28\) Hz, 1H), 2.75 (dt, \(J = 18.18, 7.20\) Hz, 1H), 2.44-2.36 (m, 2H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 199.9, 170.0, 136.1, 115.9, 75.0, 68.8, 55.1, 41.2, 34.9, 27.2. HRMS: Calculated for \([C_{10}H_{13}NO_5Na]^+\): 250.0686; found: 250.0694. The ee was determined by HPLC using a Chiralpak AD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; \(t\)\(_{\text{major}}\) = 33.0 min, \(t\)\(_{\text{minor}}\) = 29.1 min (88% ee). \([\alpha]_D^{\text{rt}}\): -14.4 (c = 0.30, CHCl\(_3\)).

7. Preliminary results for the reduction of 5b

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reduction conditions</th>
<th>Temp. (°C)</th>
<th>Combi yield 7a:7b([b]) ee (%)([c])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1([d])</td>
<td>NaBH(_4) (1 equiv), MeOH</td>
<td>-78</td>
<td>67 63:37 nd</td>
</tr>
<tr>
<td>2([d])</td>
<td>NaBH(_4)/CaCl(_2) (1 equiv), MeOH</td>
<td>-78</td>
<td>82 75:25 nd</td>
</tr>
<tr>
<td>3([e])</td>
<td>(S,S)-6 (5 mol%), Et(_3)N (5 equiv), HCO(_2)H (2 equiv), CH(_2)Cl(_2)</td>
<td>rt</td>
<td>93 77:23 99/66</td>
</tr>
<tr>
<td>4([e])</td>
<td>(R,R)-6 (5 mol%), Et(_3)N (5 equiv), HCO(_2)H (2 equiv), CH(_2)Cl(_2)</td>
<td>rt</td>
<td>87 13:87 96/65</td>
</tr>
</tbody>
</table>

[a] Isolated yield after column chromatography. [b] Determined by \(^1\)H NMR spectroscopy. [c] Determined by chiral stationary phase HPLC. [d] Reaction time was 1 h. [e] Reaction time was 24 h.

8. The synthesis of IM-2

The lactone 5b (93.4 mg, 0.43 mmol) was dissolved in CH\(_2\)Cl\(_2\) (0.9 mL) together with the catalyst (S,S)-6 (13.2 mg, 5 mol%). A premixed solution of HCO\(_2\)H (79 \(\mu\)l, 5 equiv.) and Et\(_3\)N (114 \(\mu\)l, 2 equiv.) in CH\(_2\)Cl\(_2\) (0.4 mL) was then added to the reaction mixture. After stirring at rt
for 24 h, the reaction was quenched by addition of NaHCO₃ (sat.) The aq. phase is extracted with EtOAc (3 x 5 mL) and the combined organic layers were dried, concentrated in vacuo and subjected to FC on silica-gel yielding the diastereomers 7a and 7b in 72% (66.9 mg, 0.31 mmol) and 21% (20.0 mg, 0.09 mmol) yield, respectively.

\[
(3R,4R)-3-((R)-1-Hydroxybutyl)-4-(nitromethyl)dihydrofuran-2(3H)-one \ (7a). \ \text{Compound} \ 7a \ \text{was isolated by FC (pentane/EtOAc 2:1) in 72% yield as a colorless oil.}^{1} \ \text{H NMR (400 MHz, CDCl}_3) \ \delta \ \text{ppm} \ 4.72 \ (dd, \ J = 13.97, 5.28 \ Hz, \ 1H), \ 4.62 \ (dd, \ J = 9.57, 8.10 \ Hz, \ 1H), \ 4.51 \ (dd, \ J = 13.96, 9.14 \ Hz, \ 1H), \ 4.08 \ (dd, \ J = 9.64, 7.22 \ Hz, \ 1H), \ 3.99-3.93 \ (m, \ 1H), \ 3.37-3.26 \ (m, \ 1H), \ 2.61 \ (bs, \ 1H), \ 2.53 \ (dd, \ J = 8.28, 3.95 \ Hz, \ 1H), \ 1.76-1.63 \ (m, \ 1H), \ 1.61-1.45 \ (m, \ 2H), \ 1.45-1.31 \ (m, \ 1H), \ 0.95 \ (t, \ J = 7.12 \ Hz, \ 3H). \ ^{13}C \ \text{NMR (100 MHz, CDCl}_3) \ \delta \ 175.3, \ 76.4, \ 70.9, \ 69.6, \ 47.8, \ 36.2, \ 35.8, \ 19.0, \ 13.7. \ \text{HRMS: Calculated for } [\text{C}_9\text{H}_{15}\text{NO}_5\text{Na}]^+: \ 240.0842; \ \text{found: } 240.0848. \ \text{The ee was determined by HPLC using a Chiralpak OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; } \tau_{\text{major}} = 29.5 \ \text{min, } \tau_{\text{minor}} = 27.0 \ \text{min (99% ee).} [\alpha]_{D}^{29.1} = -39.0 \ (c = 1.62, \ \text{CHCl}_3). \]

\[
(3R,4R)-3-((S)-1-Hydroxybutyl)-4-(nitromethyl)dihydrofuran-2(3H)-one \ (7b). \ \text{Compound} \ 7b \ \text{was isolated by FC (pentane/EtOAc 2:1) in 21% yield as a colorless oil.}^{1} \ \text{H NMR (400 MHz, CDCl}_3) \ \delta \ \text{ppm} \ 4.67 \ (dd, \ J = 13.61, 5.45 \ Hz, \ 1H), \ 4.61 \ (dd, \ J = 9.58, 8.19 \ Hz, \ 1H), \ 4.51 \ (dd, \ J = 13.61, 9.07 \ Hz, \ 1H), \ 4.22-4.14 \ (m, \ 1H), \ 4.12 \ (dd, \ J = 9.62, 6.34 \ Hz, \ 1H), \ 3.51-3.39 \ (m, \ 1H), \ 2.45 \ (dd, \ J = 7.13, 3.57 \ Hz, \ 1H), \ 2.27 \ (bs, \ 1H), \ 1.64-1.48 \ (m, \ 3H), \ 1.43-1.29 \ (m, \ 1H), \ 0.97 \ (t, \ J = 7.07 \ Hz, \ 3H). \ ^{13}C \ \text{NMR (100 MHz, CDCl}_3) \ \delta \ 176.4, \ 77.0, \ 70.4, \ 69.9, \ 48.3, \ 37.0, \ 34.2, \ 19.0, \ 13.7. \ \text{HRMS: Calculated for } [\text{C}_9\text{H}_{15}\text{NO}_5\text{Na}]^+: \ 240.0842; \ \text{found: } 240.0846. \ \text{The ee was determined by HPLC using a Chiralpak OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; } \tau_{\text{major}} = 29.1 \ \text{min, } \tau_{\text{minor}} = 34.0 \ \text{min (66% ee).} [\alpha]_{D}^{29.1} = -47.0 \ (c = 1.29, \ \text{CHCl}_3). \]
To a solution of the hydroxylactone 7a (66.0 mg, 0.30 mmol) in DMF (0.6 mL) at 35°C were added NaNO₂ (62.1 mg, 0.90 mmol) and AcOH (0.17 mL, 3.0 mmol). The reaction mixture was kept at this temperature under stirring for 6 h and then acidified with 1 M HCl (pH below 3). The aqueous phase was extracted with EtOAc (8 x 2 mL), the organic layers were combined, dried over MgSO₄ and concentrated in vacuo. Toluene (1 mL) was then added and the mixture was again concentrated. This process was repeated twice. Finally, remaining DMF was removed by Kugelrohr distillation (0.25 mbar, 40 °C). The afforded crude carboxylic acid intermediate was dissolved in dry THF (1.0 mL) at 0°C and BH₃·SMe₂ (114 μl, 1.20 mmol) was added dropwise. The reaction was allowed to stir at 0°C for 3 h and MeOH (1 mL) was slowly added. The volatiles were removed in vacuo (below 30 °C!). More MeOH was then added and the mixture was again concentrated (below 30°C). This was repeated 2 times and subsequent FC on silica gel (CH₂Cl₂/MeOH 20:1) afforded the pure γ-butyrolactone IM-2 (8) in 62% yield over 2 steps as a colorless oil.

(3R,4R)-3-((R)-1-hydroxybutyl)-4-(hydroxymethyl)dihydrofuran-2(3H)-one (8). ¹H NMR (400 MHz, CDCl₃) δ ppm 4.42 (t, J = 8.69 Hz, 1H), 4.06-4.00 (m, 1H), 3.98 (t, J = 8.85 Hz, 1H), 3.75 (dd, J = 10.68, 5.14 Hz, 1H), 3.67 (dd, J = 10.69, 6.62 Hz, 1H), 2.83-2.72 (m, 1H), 2.65 (dd, J = 9.38, 4.69 Hz, 1H), 1.68-1.32 (m, 4H), 0.95 (t, J = 7.11 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.3, 70.5, 68.3, 62.9, 49.2, 40.1, 36.0, 19.0, 13.9. HRMS: Calculated for [C₉H₁₆O₄Na⁺]: 211.0941; found: 211.0942. [α]D²⁰: -6.7 (c = 0.89, CHCl₃).
9. The synthesis of VB-D.

The lactone 5d (90.8 mg, 0.35 mmol) was dissolved in CH$_2$Cl$_2$ (1.0 mL) together with the catalyst (R,R)-6 (11.0 mg, 5 mol%). A premixed solution of HCO$_2$H (67 μl, 1.765 mmol, 5 equiv.) and Et$_3$N (100 μl, 0.71 mmol, 2 equiv.) in CH$_2$Cl$_2$ (0.5 mL) was then added to the reaction mixture. After stirring at rt for 24 h, the reaction was quenched by addition of NaHCO$_3$ (sat.). The aq. phase was extracted with EtOAc (3 x 5 mL) and the combined organic layers were dried, concentrated in vacuo and subjected to FC yielding diastereomers 9b and 9a in 86% (78.4 mg, 0.30 mmol) and 11% (9.8 mg, 0.04 mmol) yield, respectively.

(3R,4R)-3-((R)-1-Hydroxyheptyl)-4-(nitromethyl)dihydropyran-2(3H)-one (9a). Compound 9a was isolated by FC (pentane/EtOAc 3:1) in 11% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ ppm 4.72 (dd, $J = 13.87$, 5.27 Hz, 1H), 4.64 (dd, $J = 9.56$, 8.10 Hz, 1H), 4.50 (dd, $J = 13.89$, 9.16 Hz, 1H), 4.09 (dd, $J = 9.63$, 7.31 Hz, 1H), 4.00-3.93 (m, 1H), 3.38-3.27 (m, 1H), 2.54 (dd, $J = 6.73$, 6.73 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 175.1, 76.4, 71.3, 69.5, 47.8, 36.3, 33.9, 31.7, 29.0, 25.8, 22.5, 14.0. HRMS: Calculated for [C$_{12}$H$_{21}$NO$_5$Na]$^+$: 282.1312; found: 282.1307. The ee was determined by HPLC using a Chiralpak OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; $\tau_{major} = 29.6$ min, $\tau_{minor} = 25.6$ min (52% ee). [α]$_D^{rt}$ = -26.5 (c = 1.24, CHCl$_3$).

(3R,4R)-3-((S)-1-Hydroxyheptyl)-4-(nitromethyl)dihydropyran-2(3H)-one (9b). Compound 9b was isolated by FC (pentane/EtOAc 3:1) in 86% yield as a colorless oil. 1H NMR (400 MHz, CDCl$_3$) δ ppm 4.69-4.47 (m, 3H), 4.16-4.08 (m, 2H), 3.49-3.37 (m, 1H), 2.56 (d, $J = 5.12$ Hz, 1H; Note: OH), 2.44 (dd, $J = 6.97$, 3.49 Hz, 1H), 1.59-1.43 (m, 2H), 1.38-1.23 (m, 8H), 0.87 (t, $J = 6.72$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.7, 77.0, 70.6, 70.0, 48.3, 34.9, 34.1, 31.6, 28.9, 25.7, 22.5, 14.0. HRMS: Calculated
for [C_{12}H_{22}NO_3Na]^+: 282.1312; found: 282.1306. The ee was determined by HPLC using a Chiralpak OD column [hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; \(\tau_{\text{major}} = 23.3 \text{ min} \), \(\tau_{\text{minor}} = 30.6 \text{ min} \) (>98% ee). \([\alpha]_D^{\text{rt}}: -45.5 \) (c = 1.04, CHCl_3).

To a solution of the hydroxylactone 9b (71.6 mg, 0.28 mmol) in DMF (0.5 mL) at 35 °C were added NaNO_2 (57.1 mg, 0.83 mmol) and AcOH (0.16 mL, 2.76 mmol). The reaction mixture was stirred at this temperature for 6 h and acidified with 1 M HCl (pH below 3). This mixture was extracted with EtOAc (8 x 2 mL), the organic layers were combined, dried over MgSO_4 and concentrated in vacuo. Toluene (1 mL) was then added and the mixture was again concentrated in vacuo. This process was repeated twice. Finally, remaining DMF was removed by Kugelrohr distillation (0.25 mbar, 40 °C). The obtained crude carboxylic acid intermediate was dissolved in dry THF (1.0 mL) at 0 °C and BH\(_3\)·SMe\(_2\) (110 μl, 1.10 mmol) was dropwise added. The reaction was allowed to stir at 0 °C for 2.5 h and then quenched by slow addition of MeOH (1 mL). The excess solvents were removed in vacuo (below 30°C!). More MeOH was then added and the mixture was again concentrated in vacuo (below 30 °C). This was repeated twice and subsequent FC on Silica gel afforded the pure \(\gamma \)-butyrolactone VB-D (10) in 43% yield over 2 steps as a colorless oil.

![Chemical Structure](image)

(3R,4R)-3-((S)-1-Hydroxyheptyl)-4-(hydroxymethyl)dihydrofuran-2(3H)-one (10). Compound 10 was isolated by FC (CH\(_2\)Cl\(_2\)/MeOH 20:1) in 43% yield over 2 steps. \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) ppm 4.41 (t, \(J = 8.73 \text{ Hz} \), 1H), 4.10 (dd, \(J = 9.04, 6.57 \text{ Hz} \), 1H), 4.12-4.08 (m, 1H), 3.72 (dd, \(J = 10.67, 5.54 \text{ Hz} \), 1H), 3.67 (dd, \(J = 10.63, 6.14 \text{ Hz} \), 1H), 2.89-2.77 (m, 1H), 2.54 (dd, \(J = 7.08, 3.64 \text{ Hz} \), 1H), 1.64-1.23 (m, 1H), 0.88 (t, \(J = 6.76 \text{ Hz} \), 3H). \(^1^3\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 179.0, 70.7, 69.7, 63.3, 48.3, 38.0, 34.8, 31.7, 29.1, 25.8, 22.6, 14.0. HRMS: Calculated for [C\(_{12}\)H\(_{22}\)O\(_4\)Na]^+: 253.1410; found: 253.1410. \([\alpha]_D^{\text{rt}}: -34.3 \) (c = 1.69, CHCl\(_3\)).
10. Overview of γ-Butyrolactone autoregulators

SCB1

SCB2

SCB3

SCBs from S. coelicolor (Act, Red)

IM-2 from S. lavendulae (showdomycin and mimycin)

Factor I from Streptomyces viridochromogenes (anthracyclines and sporulation in S. griseus) 2S3S or 2R3R

A Factor from S. griseus (streptomyacin and sporulation)

S. bijinensis and S. cyanofuscatus (anthracyclines in S. griseus) 2R3R or 2S3S

VB-A

VB-B

VB-C

VB-D

VB-E

11. X-Ray of compound 5f

Crystal data for [5f]: C_{11}H_{17}NO_{5}, M = 243.26, orthorhombic, Space group P2(1)2(1)2(1), a = 5.6073(6) Å, b = 10.3774(11) Å, c = 20.890(2) Å, V = 1215.6(2) Å³, T = 100 K, Z = 4, D_c = 1.329 g cm⁻³, μ(Mo Kα, λ = 0.71073 Å) = 1.789 mm⁻¹, 9977 reflections collected, 2106 unique [R_{int} = 0.034], which were used in all calculations. Refinement on F², final R(F) = 0.036, Rw(F²) = 0.0846. Flack parameter x = -0.3(10).
12. Representative NMR spectra

Figure 1: 1H and 13C NMR spectra of compound 1d.
Figure 2: 1H and 13C NMR spectra of compound 1e.
Figure 3: 1H and 13C NMR spectra of compound 1f.
Figure 4: 1H and 13C NMR spectra of compound 1g.
Figure 5: 1H and 13C NMR spectra of compound $1h$.
Figure 6: 1H and 13C NMR spectra of compound li.
Figure 7: 1H and 13C NMR spectra of compound 1j.
Figure 8: $1H$ and $13C$ NMR spectra of compound 2.
Figure 9: 1H and 13C NMR spectra of compound 4a.
Figure 10: 1H and 13C NMR spectra of compound 4b.
Figure 11: 1H and 13C NMR spectra of compound 4d.
Figure 12: 1H and 13C NMR spectra of compound 4e.
Figure 13: 1H and 13C NMR spectra of compound 4f.
Figure 14: 1H and 13C NMR spectra of compound 4g.
Figure 15: 1H and 13C NMR spectra of compound 4h.
Figure 16: 1H and 13C NMR spectra of compound 4i.
Figure 17: 1H and 13C NMR spectra of compound 4j.
Figure 18: 1H and 13C NMR spectra of compound 4'a.
Figure 19: 1H and 13C NMR spectra of compound 4'b.
Figure 20: 1H and 13C NMR spectra of compound 5a.
Figure 21: 1H and 13C NMR spectra of compound 5b.
Figure 22: 1H and 13C NMR spectra of compound 5c.
Figure 23: 1H and 13C NMR spectra of compound 5d.
Figure 24: 1H and 13C NMR spectra of compound 5e.
Figure 25: 1H and 13C NMR spectra of compound 5f.
Figure 26: 1H and 13C NMR spectra of compound 5g.
Figure 27: 1H and 13C NMR spectra of compound 7a.
Figure 28: 1H and 13C NMR spectra of compound 7b.
Figure 29: 1H and 13C NMR spectra of compound 8.
Figure 30: 1H and 13C NMR spectra of compound 9a.
Figure 31: 1H and 13C NMR spectra of compound 9b.
Figure 32: 1H and 13C NMR spectra of compound 10.