Supporting Information

Cesium fluoride-promoted Stille coupling reaction: an efficient synthesis of 9Z-retinoic acid and its analogues using a practical building block

Takashi Okitsu, Kinya Iwatsuka and Akimori Wada^{*} Department of Organic Chemistry for Life Sscience, Kobe Pharmaceutical University, 4-19-1,

Motoyamakita-machi, Higashinada-ku, Kobe 658-8558, Japan

Table of Contents

Experimental Section	······S2
MR Spectra	······S12

General. Optical rotations were measured on a JASCO DIP-370 polarimeter ($[\alpha]_D$ values are in units of 10⁻¹ deg cm² g⁻¹). IR spectra were measured on a Perkin Elmer FT-IR spectrometer, model Paragon 1000, using CHCl₃. ¹H NMR and ¹³C NMR spectra were determined on a Varian Gemini-300 or a Varian Mercury-300 or a Varian VXR-500 superconducting FT-NMR spectrometer in CDCl₃ unless otherwise noted (tetramethylsilane as internal reference). *J*-Values are given in Hz. Mass spectra were taken on a Hitachi M-4100 spectrometer. Column chromatography was performed using Kanto Silica Gel 60 N (spherical, neutral). All reactions were carried out under Ar or N₂ atmosphere. All reagents were used directly as obtained commercially unless otherwise noted.

(Z)-3-Tributylstannylbut-2-en-1-al (12)

To a solution of stannyl alcohol 9^{11} (5.50 g, 15.2 mmol) in CH₂Cl₂ (75 mL) was Bu₃Sn added Dess-Martin periodinane (7.11 g, 16.8 mmol) and the mixture was stirred for 30 min. The reaction mixture was cooled to 0 °C, and then guenched with

saturated aqueous solution of NaHCO₃, and Na₂S₂O₃. The reaction mixture was extracted with CH₂Cl₂, dried over Na₂SO₄, filtered, and evaporated in *vacuo*. The residue was purified by flash column chromatography on silica gel eluting with hexane/AcOEt = 10/1 to give **12** as a colorless oil (4.62 g, 84%): ¹H NMR (300 MHz, CDCl₃) δ 9.47 (d, *J* = 6.9 Hz, 1H), 6.69 (dd, *J* = 6.9, 1.5 Hz, 1H), 2.24 (d, *J* = 1.5 Hz, 3H), 1.37-1.30 (m, 6H), 1.55-1.44 (m, 6H), 1.27-1.01 (m, 6H), 0.89 (t, *J* = 7.5 Hz, 9H). The spectral data of this compound were identical with those of the literature.²)

Ethyl (2*E*,4*E*,6*Z*)-7-tributylstannyl-3-methyl-2,4,6-octatrienoate (11)

A solution of triethyl 3-methyl-4-phosphonocrotonate (15.7 g, 14.5 mmol) in dry THF (100 mL) was cooled to 0 °C and treated with DMPU (9.58 mL, 79.4 mmol) and *n*-BuLi (36.1 mL of 1.65 M solution in *n*-hexane). The mixture was stirred at the same temperature for 20 min and then cooled to -78 °C. A solution of aldehyde **12** (7.13 g, 19.9 mmol) in THF (40 mL) was

СНО

12

slowly added, and the reaction mixture was allowed to warm to room temperature overnight. The reaction mixture was diluted with saturated aqueous solution of NH₄Cl, and extracted with Et₂O. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and evaporated in *vacuo*. The residue was purified by flash column chromatography on silica gel eluting with hexane/AcOEt = 20/1 to give **11** as a yellow oil (8.68 g, 93%): IR 2959, 2929, 1701, 1605, 1218, 1157 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.76 (dd, *J* = 10.8, 1.2 Hz, 1H), 6.54 (dd, *J* = 15.0, 10.8 Hz, 1H), 6.18 (d, *J* = 15.0 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.29 (d, *J* = 1.2 Hz, 3H) 2.07 (d, *J* = 1.2 Hz, 3H) 1.54-1.45 (m, 6H), 1.30 (sext, *J* = 7.2 Hz, 6H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.03-0.97 (m, 6H), 0.89 (t, *J* = 7.2 Hz, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 167.1, 153.8, 152.5, 140.4 (t, ²*J*_{CSn} = 10.1, 9.8 Hz), 136.2 (t, ³*J*_{CSn} = 20.4 Hz), 134.3, 118.5, 59.6, 29.1 (t, ²*J*_{CSn} = 10.0 Hz), 27.8, 27.3 (t, ³*J*_{CSn} = 28.9 Hz), 14.3, 13.7, 13.6, 10.3 (t, ¹*J*_{CSn} = 162 Hz); HR-EIMS Calcd for C₂₃H₄₂O₂Sn (M⁺) 470.2207. Found 470.2210.

General Procedure for the Triflation of Carbonyl Compounds

A solution of *i*-Pr₂NH (1.1 equiv) in dry THF (1 M) was cooled at -78 °C and *n*-BuLi (1.1 equiv) was added dropwise. The reaction mixture was stirred for 10 min at the same temperature, then for 30 min at 0 °C, and recooled at -78 °C. A solution of carbonyl compound (1 equiv) in THF (1 M) was added and the reaction mixture was stirred for 2 h at the same temperature. After PhNTf₂ (1.5 equiv) was added to the reaction mixture, it was allowed to warm to room temperature in cooling bath for overnight. The solution was evaporated in *vacuo*, then the residue was purified by flash column chromatography on silica gel to give a vinyl triflate.

(E)-2-(2,2,6-Trimethylcyclohexen-1-yl)ethenyl trifluoromethanesulfonate (8)

According to general procedure for the triflation of carbonyl compounds, **8** was obtained from *i*-Pr₂NH (465 μ L, 3.31 mmol), *n*-BuLi (2.01 mL, 1.65 M in *n*-hexane, 3.31 mmol), 2,2,6-trimethyl-cyclohexene-1-acetaldehyde (**13**) (purified

by flash column chromatography eluting with hexane/ $Et_2O = 30/1$ before use, 501 mg, 3.01 mmol) and PhNTf₂ (1.62 g, 4.52 mmol). Eluent: hexane.

8: colorless oil (658 mg, 73%); ¹H NMR (300 MHz, CDCl₃) δ 6.41 (d, *J* = 12.0 Hz, 1H), 6.22 (br d, *J* = 12.0 Hz, 1H), 2.00 (br t, *J* = 6.0 Hz, 2H), 1.68 (d, *J* = 0.6 Hz, 3H), 1.65-1.57 (m, 2H), 1.49-1.45 (m, 2H), 0.98 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 137.7, 133.1, 130.2, 120.4, 118.7 (q, *J*_{CF} = 319 Hz), 38.9, 33.9, 32.6, 28.3, 21.2, 18.9. The ¹H NMR spectral data of this compound were identical with those of the literature.³⁾

(6S)-Isopropyl-(3R)-methylcyclohex-1-enyl trifluoromethanesulfonate (14a)

According to general procedure for the triflation of carbonyl compounds, **14a** was obtained from *i*-Pr₂NH (1.00 mL, 7.13 mmol), *n*-BuLi (4.32 mL, 1.65 M in *n*-hexane, 7.13 mmol), (-)-menthone (1.00 g, 6.48 mmol) and PhNTf₂ (3.47 g, 9.72 mmol). Eluent: hexane.

14a: colorless oil (1.10 g, 59%); ¹H NMR (300 MHz, CDCl₃) δ 5.64 (br s, 1H), 2.50-2.45 (m, 1H), 2.36-2.28 (m, 1H), 2.21-2.10 (m, 1H), 1.86-1.77 (m, 2H), 1.48-1.36 (m, 1H), 1.19-1.11 (m, 1H), 1.04 (d, *J* = 6.9 Hz, 3H), 0.95 (d, *J* = 6.6 Hz, 3H), 0.82 (d, *J* = 6.9 Hz, 3H). The ¹H NMR spectral data of this compound were identical with those of the literature.⁴

(1*R*,4*R*)-1,7,7-Trimethylbicyclo[2.2.1]hept-2-en-2-yl trifluoromethanesulfonate (14b)

According to general procedure for the triflation of carbonyl compounds, **14b** was obtained from *i*-Pr₂NH (1.01 mL, 7.23 mmol), *n*-BuLi (4.38 mL, 1.65 M in **14b** *n*-hexane, 7.23 mmol), (+)-camphor (1.00 g, 6.57 mmol) and PhNTf₂ (3.52 g, 9.85 mmol). Eluent: hexane.

14b: colorless oil (1.43 g, 76%); ¹H NMR (300 MHz, CDCl₃) δ 5.66 (d, J = 3.9 Hz, 1H), 2.45 (t, J = 3.6 Hz, 1H), 1.93 (ddd, J = 15.6, 8.4, 3.6 Hz, 1H), 1.65 (ddd, J = 12.0, 8.4, 3.6 Hz, 1H), 1.33 (ddd, J

14a

OTf

.OTf

8

= 12.0, 9.0, 3.6 Hz, 1H), 1.15 (ddd, J = 12.0, 9.0, 3.6 Hz, 1H), 1.03 (s, 3H), 0.92 (s, 3H), 0.79 (s, 3H). The ¹H NMR spectral data of this compound were identical with those of the literature.⁵⁾

1,4-Dioxaspiro[4.5]dec-7-en-8-yl trifluoromethanesulfonate (14c)

According to general procedure for the triflation of carbonyl compounds, **14c** was obtained from *i*-Pr₂NH (790 μ L 5.63 mmol), *n*-BuLi (3.39 mL, 1.66 M in *n*-hexane, 5.63 mmol), 1,4-cyclohexanedione mono(ethylene ketal) (800 mg, 5.12 mmol) and PhNTf₂ (2.74 g, 7.68 mmol). Eluent: hexane/AcOEt = 9/1.

14c: colorless oil (488 mg, 33%); ¹H NMR (300 MHz, CDCl₃) δ 5.67-5.65 (m, 1H), 4.01-3.97 (m, 4H), 2.57-2.51 (m, 2H), 2.42-2.39 (m, 2H), 1.90 (t, *J* = 6.6 Hz, 2H); *Anal*. Calcd for C₉H₁₁F₃O₃S: C, 37.50; H, 3.85; F, 19.77. Found: C, 37.72; H, 4.07; F, 19.50. The ¹H NMR spectral data of this compound were identical with those of the literature.⁶

1-tert-Butoxycarbonyl-5,6-dihydro-2H-pyridin-4-yl trifluoromethanesulfonate (14d)

According to general procedure for the triflation of carbonyl compounds, **14d** was obtained from *i*-Pr₂NH (619 μ L 4.42 mmol), *n*-BuLi (2.66 mL, 1.66 M in *n*-hexane, 4.42 mmol), 1-Boc-4-piperidone (800 mg, 4.02 mmol) and PhNTf₂ (2.15 g, 6.02 mmol). Eluent: hexane/AcOEt = 9/1.

OTf

OTf

14f

14e

14c

OTf

14d: colorless oil (651 mg, 49%); ¹H NMR (300 MHz, CDCl₃) δ 5.76 (br s, 1H), 4.06-4.03 (m, 2H), 3.63 (t, J = 5.7 Hz, 2H), 2.46-2.42 (m, 2H), 1.47 (s, 9H). The ¹H NMR spectral data of this compound were identical with those of the literature.⁶

3,4-Dihydronaphthalen-1-yl trifluoromethanesulfonate (14e)

According to general procedure for the triflation of carbonyl compounds, **14e** was obtained from *i*-Pr₂NH (1.05 mL 7.52 mmol), *n*-BuLi (4.85 mL, 1.55 M in *n*-hexane, 7.52 mmol), α -tetralone (1.00 g, 6.84 mmol) and PhNTf₂ (3.66 g, 10.3 mmol). Eluent: hexane.

14e: yellow oil (1.50 g, 80%); ¹H NMR (300 MHz, CDCl₃) δ 7.36-7.31 (m, 1H), 7.27-7.21 (m, 2H), 7.18-7.13 (m, 1H), 5.99 (t, *J* = 4.5 Hz, 1H), 2.84 (t, *J* = 8.4 Hz, 2H), 2.47 (td, *J* = 8.4, 4.5 Hz, 2H). The ¹H NMR spectral data of this compound were identical with those of the literature.⁷

3,4-Dihydronaphthalen-2-yl trifluoromethanesulfonate (14f)

According to general procedure for the triflation of carbonyl compounds, **14f** was obtained from *i*-Pr₂NH (1.05 mL 7.52 mmol), *n*-BuLi (4.56 mL, 1.65 M in *n*-hexane, 7.52 mmol), β -tetralone (1.00 g, 6.84 mmol) and PhNTf₂ (3.66 g, 10.3 mmol). Eluent: hexane / Et₂O = 50/1.

14f: colorless oil (1.85 g, 97%); ¹H NMR (300 MHz, CDCl₃) δ 7.23-7.19 (m, 2H), 7.18-7.13 (m, 1H), 7.11-7.06 (m, 1H), 6.48 (s, 1H), 3.07 (t, *J* = 8.7 Hz, 2H), 2.70 (t, *J* = 8.7 Hz, 2H); *Anal.* Calcd

for $C_{11}H_9F_3O_3S$: C, 47.48; H, 3.26; F, 20.48. Found: C, 47.30; H, 3.47; F, 20.59. The ¹H NMR spectral data of this compound were identical with those of the literature.⁶

2-Indenyl trifluoromethanesulfonate (14g)

According to general procedure for the triflation of carbonyl compounds, **14g** was obtained from *i*-Pr₂NH (349 μ L 2.49 mmol), *n*-BuLi (1.50 mL, 1.66 M in *n*-hexane, 2.49 mmol), 2-indanone (300 mg, 2.26 mmol) and PhNTf₂ (1.21 g, 3.39 **14g** mmol). Eluent: hexane.

14g: colorless oil (394 mg, 66%); IR 3030, 1619, 1610, 1578, 1427, 1204, 1141, 1092 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.41-7.24 (m, 4H), 6.70 (s, 1H), 3.67 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 153.2, 140.1, 137.3, 127.2, 126.1, 123.7, 122.1, 119.5, 118.7 (q, *J*_{CF} = 319 Hz), 37.6; *Anal.* Calcd for C₁₀H₇F₃O₃S: C, 45.46; H, 2.67; F, 21.57. Found: C, 45.34; H, 2.81; F, 21.53; HR-EIMS Calcd for C₁₀H₇F₃O₃S (M⁺) 264.0068. Found 264.0041.

(2*S*,4*aR*)-1,2,3,4,4a,5-Hexahydro-1,1,5,5-tetramethyl-2,4a-methanonaphthalen-7-yl trifluoromethanesulfonate (14h)

According to general procedure for the triflation of carbonyl compounds, **14h** was obtained from *i*-Pr₂NH (247 μ L 1.76 mmol), *n*-BuLi (1.14 mL, 1.55 M in *n*-hexane, 1.76 mmol), (-)-isolongifolen-9-one (350 mg, 1.60 mmol) and PhNTf₂ (859 mg, 2.41 mmol). Eluent: hexane.

14h: yellow oil (469 mg, 83%); $[\alpha]_D^{29}$ -290 (*c* 0.980, MeOH); IR 2965, 2871, 1662, 1613, 1417, 1204, 1142, 1066 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.40 (d, *J* = 2.1 Hz, 1H), 5.19 (d, *J* = 2.1 Hz, 1H), 1.93 (br t, *J* = 2.1 Hz, 1H), 1.79-1.74 (dq, *J* = 7.8, 2.1 Hz, 1H), 1.72-1.60 (m, 2H), 1.55-1.43 (m, 1H), 1.28 (d, *J* = 6.9 Hz, 1H), 1.19-1.10 (m, 1H), 1.13 (s, 3H), 1.12 (s, 3H), 1.05 (s, 3H), 0.99 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 146.2, 121.9, 118.6 (q, *J*_{CF} = 319 Hz), 106.4, 56.7, 46.6, 43.7, 35.5, 34.1, 28.6, 27.1, 24.4, 24.3, 24.0, 23.9; *Anal*. Calcd for C₁₆H₂₁F₃O₃S: C, 54.84; H, 6.04; F, 16.27. Found: C, 55.55; H, 6.09; F, 16.13; HR-EIMS Calcd for C₁₆H₂₁F₃O₃S (M⁺) 350.1163. Found 350.1159.

(4*R*,4*aS*,6*R*)-4,4a,5,6,7,8-Hexahydro-4,4a-dimethyl-6-(1-methylethenyl)naphthalen-2-yl trifluoromethanesulfonate (14i)

According to general procedure for the triflation of carbonyl compounds, **14i** was obtained from *i*-Pr₂NH (565 μ L 4.03 mmol), *n*-BuLi (2.44 mL, 1.65

M in *n*-hexane, 4.03 mmol), (+)-nootkatone (800 mg, 3.66 mmol) and PhNTf₂ (1.96 g, 5.50 mmol). Eluent: hexane.

14i: colorless oil (1.08 g, 84%); $[\alpha]_D^{28}$ +152 (*c* 1.14, MeOH); IR 2936, 2861, 1655, 1607, 1418, 1204, 1142, 1082 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 5.53 (br s, 1H), 5.27 (br t, *J* = 2.4 Hz, 1H), 4.74-4.72 (m, 2H), 2.59-2.52 (m, 1H), 2.40-2.32 (m, 2H), 2.17 (tt, *J* = 12.3, 3.0 Hz, 1H), 1.92 (dt, *J*

OTf

= 12.9, 2.4 Hz, 1H), 1.87-1.79 (m, 1H), 1.74 (t, J = 1.2 Hz, 3H), 1.36-1.09 (m, 2H), 1.07 (d, J = 7.8 Hz, 3H), 0.90 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 152.1, 149.4, 144.7, 118.6 (q, $J_{CF} = 319$ Hz), 117.8, 114.2, 109.0, 45.2, 41.4, 41.0, 38.9, 31.4, 30.8, 20.8, 14.4, 13.5; *Anal.* Calcd for C₁₆H₂₁F₃O₃S: C, 54.84; H, 6.04; F, 16.27. Found: C, 54.78; H, 6.31; F, 16.07; HR-EIMS Calcd for C₁₆H₂₁F₃O₃S (M⁺) 350.1163. Found 350.1178.

2-((1R)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene)ethenyl trifluoromethane-

sulfonate (14j)

According to general procedure for the triflation of carbonyl compounds, **14j** was obtained from *i*-Pr₂NH (685 μ L 4.89 mmol), *n*-BuLi (2.96 mL, 1.65 M in

n-hexane, 4.89 mmol), aldehyde⁸⁾ (730 mg, 4.45 mmol) and PhNTf₂ (2.38 g, 6.67 mmol). Eluent: hexane.

14j: colorless oil (666 mg, 51%); $[\alpha]_D^{30}$ +1.04 (*c* 0.964, MeOH); IR 2952, 2889, 1644, 1605, 1423, 1206, 1142, 1018 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.66 (d, *J* = 12.0 Hz, 1H), 6.21 (d, *J* = 12.0 Hz, 1H), 5.72 (br s, 1H), 2.49-2.35 (m, 3H), 2.26 (td, *J* = 5.7, 1.5 Hz, 1H), 2.17-2.13 (m, 1H), 1.33 (s, 3H), 1.18 (d, *J* = 8.7 Hz, 1H), 0.80 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 140.2, 134.8, 128.6, 123.8, 118.6 (q, *J*_{CF} = 319 Hz), 41.9, 40.5, 37.9, 32.2, 31.1, 26.1, 20.6; HR-EIMS Calcd for C₁₂H₁₅F₃O₃S (M⁺) 296.0694. Found 296.0674.

General Procedure for the Stille Coupling (Method A)

A mixture of the vinyl triflate (1.1 equiv), stannanyl ester **11** (1.0 equiv), $Pd_2(dba)_3$ ·CHCl₃ (4 mol%), and AsPh₃ (16 mol%) was dissolved in dry DMF (0.1 M), then CsF (2.0 equiv) was added. The flask was evacuated and refulled with argon five times. After the mixture was stirred at 45 °C for the required time, cooled to room temperature, quenched with water, and extracted with Et₂O. The organic phase was dried over Na₂SO₄, filtrated, and evaporated in *vacuo*. The residue was purified by column chromatography using neutralized SiO₂/powdered KF (9/1) to give a coupled product.

General Procedure for the Stille Coupling (Method B)

According to Baldwin's procedure,⁹⁾ a mixture of the vinyl triflate (1.0 equiv) and the stannanyl ester **11** (1.3 equiv) was dissolved in dry DMF (0.1 M), then CsF (2.0 equiv), Pd(PPh₃)₄ (10 mol%), and CuI (20 mol%) was added. The flask was evacuated and refulled with argon five times. After the mixture was stirred at 45 °C for the required time, cooled to room temperature, and diluted with CH₂Cl₂ and water. After vigorous stirring, the mixture was filtered through Celite with CH₂Cl₂/AcOEt (1/1). The organic layer was separated, dried over Na₂SO₄, filtrated, and evaporated in *vacuo*. The residue was purified by column chromatography using neutralized SiO₂/powdered KF (9/1) to give a coupled product.

Ethyl (9Z)-retinoate (5)

According to Method A, **5** (49.8 mg, 88%) was obtained from vinyl triflate **8** (56.6 mg, 0.190 mmol), stannanyl ester **11** (81.0 mg, 0.173 mmol), $Pd_2(dba)_3$ ·CHCl₃ (7.1 mg, 6.90 µmol), AsPh₃ (8.5 mg, 27.6 µmol), and CsF (52.4 mg, 0.345 mmol). Eluent: hexane/AcOEt = 30/1. Reaction time: 1.5 h.

5: yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.08 (dd, *J* = 15.0, 11.4 Hz, 1H), 6.65 (d, *J* = 15.9 Hz, 1H), 6.27 (d, *J* = 16.5 Hz, 1H), 6.21 (d, *J* = 15.0 Hz, 1H), 6.05 (d, *J* = 11.4 Hz, 1H), 5.76 (s, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 2.35 (d, *J* = 0.9 Hz, 3H), 2.05 (t, *J* = 6.3 Hz, 2H), 1.99 (s, 3H) 1.74 (s, 3H), 1.68-1.60 (m, 2H), 1.50-1.46 (m, 2H), 1.28 (t, *J* = 7.2 Hz, 3H), 1.04 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 152.7, 138.3, 138.0, 134.4, 130.1, 130.0, 129.7, 129.5, 128.0, 118.5, 113.8, 59.6, 39.5, 34.2, 33.0, 29.0, 21.8, 20.8, 19.2, 14.3. The ¹H NMR spectral data of this compound were identical with those of the literature.¹⁰

Ethyl (2*E*,4*E*,6*Z*)-7-[(6*S*)-isopropyl-(3*R*)-methylcyclohex-1-enyl]-3-

methyl-2,4,6-octatrienoate (15a)

According to Method A, **15a** (243 mg, 77%) was obtained from vinyl triflate **14a** (310 mg, 1.08 mmol), stannanyl ester **11** (465 mg, 0.991 mmol), $Pd_2(dba)_3$ ·CHCl₃ (41.0 mg, 39.6 µmol), AsPh₃ (48.5 mg, 0.158 mmol) and CsF (300 mg, 1.97 mmol). Eluent: hexane/Et₂O = 30/1. Reaction time: 4 h.

15a: yellow oil; $[\alpha]_D^{26}$ +215 (*c* 0.858, MeOH); IR 2960, 2852, 1698, 1600, 1241, 1156 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.98 (dd, *J* = 15.3, 11.1 Hz, 1H), 6.15 (d, *J* = 15.3 Hz, 1H), 5.97 (d, *J* = 10.8 Hz, 1H), 5.72 (s, 1H), 5.42 (br s, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.34-2.18 (m, 2H), 2.27 (d, *J* = 1.2 Hz, 3H), 1.88 (s, 3H), 1.88-1.69 (m, 3H), 1.47-1.34 (m, 1H), 1.27 (t, *J* = 7.2 Hz, 3H), 1.12-0.99 (m, 1H), 0.96 (d, *J* = 7.2 Hz, 3H), 0.90 (d, *J* = 7.2 Hz, 3H), 0.67 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 153.3, 146.8, 141.1, 135.1, 133.1, 132.7, 126.3, 117.6, 59.5, 41.7, 31.2, 30.8, 28.9, 23.9, 22.0, 21.20, 21.16, 16.6, 14.3, 13.8; HR-EIMS Calcd for C₂₁H₃₂O₂ (M⁺) 316.2402. Found 316.2420.

Ethyl (2*E*,4*E*,6*Z*)-3-methyl-7-[(1*R*,4*R*)-1,7,7-trimethylbicyclo[2.2.1]hept-2-en-2-yl]-2,4,6-octatrienoate (15b)

According to Method B, **15b** (81.6 mg, 76%) was obtained from vinyl triflate **14b** (98.0 mg, 0.345 mmol), stannanyl ester **11** (210 mg, 0.448 mmol), CsF (300 mg, 1.97 mmol), Pd(PPh₃)₄ (39.9 mg, 34.5 μ mol) and CuI (13.1 mg, 68.9 μ mol). Eluent: hexane/Et₂O = 40/1. Reaction time: 1.5 h.

15b: yellow oil; $[\alpha]_D^{26}$ -185 (*c* 1.63, MeOH); IR 2960, 2875, 1698, 1600, 1241, 1156 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.91 (dd, *J* = 15.0, 11.0 Hz, 1H), 6.16 (d, *J* = 15.0 Hz, 1H), 6.07 (d, *J* = 11.0 Hz, 1H), 5.76 (d, *J* = 3.5 Hz, 1H), 5.71 (s, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 2.38 (br t, *J* = 3.5 Hz, 1H), 2.27 (d, *J* = 1.0 Hz, 3H), 1.94-1.89 (m, 1H), 1.91 (s, 3H), 1.60 (ddd, *J* = 12.0, 8.5, 3.5 Hz, 1H), 1.28

(t, J = 7.0 Hz, 3H), 1.20 (ddd, J = 12.5, 9.0, 3.5 Hz, 1H), 1.07 (ddd, J = 12.0, 9.0, 3.5 Hz, 1H), 1.01 (s, 3H), 0.93 (s, 3H), 0.80 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.3, 153.3, 148.8, 141.9, 133.3, 133.03, 132.97, 128.0, 117.8, 59.5, 56.9, 55.8, 51.9, 31.5, 25.5, 23.9, 19.78, 19.76, 14.3, 13.7, 12.2; HR-EIMS Calcd for C₂₁H₃₀O₂ (M⁺) 314.2246. Found 314.2242.

Ethyl (2*E*,4*E*,6*Z*)-7-(1,4-dioxaspiro[4.5]dec-7-en-8-yl)-3-methyl-

2,4,6-octatrienoate (15c)

According to Method A, **15c** (31.1 mg, 47%) was obtained from vinyl triflate **14c** (66.2 mg, 0.230 mmol), stannanyl ester **11** (98.0 mg, 0.209 mmol), $Pd_2(dba)_3$ ·CHCl₃ (8.6 mg, 8.35 µmol), AsPh₃ (10.2 mg, 33.4 µmol) and CsF (63.4 mg, 0.418 mmol). Eluent: hexane/AcOEt = 10/1. Reaction time: 3.5 h.

15c: yellow oil; IR 2985, 2889, 1700, 1601, 1242, 1157 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.88 (dd, J = 15.6, 11.1 Hz, 1H), 6.16 (d, J = 15.6 Hz, 1H), 5.95 (d, J = 11.4 Hz, 1H), 5.72 (s, 1H), 5.42 (br s, 1H), 4.15 (q, J = 7.2 Hz, 2H), 2.34-2.18 (m, 2H), 2.27 (d, J = 1.2 Hz, 3H), 1.88 (s, 3H), 1.88-1.69 (m, 3H), 1.47-1.34 (m, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.12-0.99 (m, 1H), 0.96 (d, J = 7.2 Hz, 3H), 0.90 (d, J = 7.2 Hz, 3H), 0.67 (d, J = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 153.2, 145.5, 137.5, 133.3, 132.8, 126.0, 123.3, 117.9, 107.6, 64.4 (2C), 59.5, 35.8, 31.1, 27.1, 23.4, 14.3, 13.8; HR-EIMS Calcd for C₁₉H₂₆O₄ (M⁺) 318.1831. Found 318.1831.

Ethyl (2E,4E,6Z)-7-(1-*tert*-butoxycarbonyl-5,6-dihydro-2*H*-pyridine-

4-yl)-3-methyl-2,4,6-octatrienoate (15d)

According to Method A, **15d** (37.0 mg, 65%) was obtained from vinyl triflate **14d** (57.1 mg, 0.172 mmol), stannanyl ester **11** (73.5 mg, 0.157 mmol), $Pd_2(dba)_3$ ·CHCl₃ (6.5 mg, 6.27 µmol), AsPh₃ (7.7 mg, 25.1 µmol) and CsF (47.6 mg, 0.313 mmol). Eluent: hexane/AcOEt = 10/1. Reaction time: 3.5 h.

15d: yellow oil; IR 2982, 2933, 1689, 1602, 1241, 1159 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.81 (dd, *J* = 15.0, 11.0 Hz, 1H), 6.17 (d, *J* = 15.0 Hz, 1H), 5.98 (d, *J* = 11.0 Hz, 1H), 5.72 (s, 1H), 5.53 (br s, 1H), 4.15 (q, *J* = 7.0 Hz, 2H), 3.99 (br d, *J* = 2.5 Hz, 2H), 3.54 (br t, *J* = 5.0 Hz, 2H), 2.25 (s, 3H), 2.20 (br s, 2H), 1.89 (s, 3H), 1.47 (s, 9H), 1.27 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 155.1, 152.9, 144.0, 136.8, 134.3, 132.1, 126.6, 123.2, 118.6, 79.9, 59.8, 43.5, 40.8, 28.7 (3C), 28.1, 23.4, 14.6, 14.1; HR-EIMS Calcd for C₂₁H₃₁N₁O₄ (M⁺) 361.2253. Found 361.2256.

Ethyl (2*E*,4*E*,6*Z*)-7-(3,4-dihydronaphthalen-1-yl)-3-methyl-2,4,6octatrienoate (15e)

According to Method B, **15e** (160 mg, 88%) was obtained from vinyl triflate **14e** (163 mg, 0.586 mmol), stannanyl ester **11** (357 mg, 0.762 mmol), CsF

(178 mg, 1.17 mmol), Pd(PPh₃)₄ (67.7 mg, 58.6 μ mol) and CuI (22.3 mg, 0.117 mmol). Eluent: hexane/Et₂O = 30/1. Reaction time: 1.5 h.

15e: yellow oil; IR 2940, 2834, 1700, 1603, 1242, 1157 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.18-7.15 (m, 3H), 6.99 (br t, J = 4.2 Hz, 1H), 6.66 (dd, J = 15.3, 10.8 Hz, 1H), 6.28 (d, J = 10.8 Hz, 1H), 6.22 (d, J = 15.3 Hz, 1H), 5.89 (td, J = 4.2, 1.5 Hz, 1H), 5.74 (s, 1H), 4.16 (qd, J = 7.2, 1.5 Hz, 2H), 2.82 (br d, J = 7.8 Hz, 2H), 2.39 (br q, J = 7.8 Hz, 2H), 2.15 (br q, J = 1.2 Hz, 3H), 2.02 (s, 3H), 1.28 (td, J = 7.2, 1.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 152.9, 143.0, 138.6, 136.3, 133.8, 133.7, 132.5, 128.6, 127.6, 127.1 (2C), 126.5, 124.5, 118.2, 59.5, 28.0, 24.7, 22.9, 14.3, 13.7; HR-EIMS Calcd for C₂₁H₂₄O₂ (M⁺) 308.1776. Found 308.1789.

Ethyl (2E,4E,6Z)-7-(3,4-dihydronaphthalen-2-yl)-3-methyl-2,4,6-

octatrienoate (15f)

According to Method B, **15f** (50.2 mg, 65%) was obtained from vinyl triflate **14f** (70.0 mg, 0.252 mmol), stannanyl ester **11** (153 mg, 0.327 mmol), CsF (76.4 mg, 0.503 mmol), Pd(PPh₃)₄ (29.1 mg, 25.2 μ mol), and CuI (9.6 mg, 50.3 μ mol). Eluent: hexane/Et₂O = 30/1. Reaction time: 1.5 h.

15f: yellow oil; IR 2939, 2892, 1698, 1605, 1239, 1154 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.20-7.13 (m, 3H), 7.08-7.04 (m, 1H), 7.00 (dd, J = 15.3, 11.1 Hz, 1H), 6.40 (s, 1H), 6.24 (d, J = 15.3 Hz, 1H), 6.09 (d, J = 11.1 Hz, 1H), 5.75 (s, 1H), 4.16 (q, J = 7.2 Hz, 2H), 2.89 (br t, J = 7.8 Hz, 2H), 2.46-2.37 (m, 2H), 2.24 (d, J = 0.9 Hz, 3H), 1.99 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 153.0, 143.9, 139.8, 134.9, 134.09, 134.06, 132.5, 127.3, 127.2, 127.0, 126.9, 126.7, 126.4, 118.2, 59.6, 28.0, 26.8, 22.8, 14.3, 13.9; HR-EIMS Calcd for C₂₁H₂₄O₂ (M⁺) 308.1776. Found 308.1751.

Ethyl (2E,4E,6Z)-7-(2-indenyl)-3-methyl-2,4,6-octatrienoate (15g)

According to Method B, **15g** (32.9 mg, 59%) was obtained from vinyl triflate **14g** (50.2 mg, 0.190 mmol), stannanyl ester **11** (116 mg, 0.247 mmol), CsF (57.7 mg, 0.380 mmol), Pd(PPh₃)₄ (22.0 mg, 19.0 μ mol), and CuI (7.2 mg, 38.0 μ mol). Eluent: hexane/Et₂O = 35/1. Reaction time: 1.5 h.

15g: yellow oil; IR 3011, 2984, 1699, 1604, 1243, 1157 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.48 (d, J = 6.6 Hz, 1H), 7.41 (m, J = 7.2 Hz, 1H), 7.32-7.18 (m, 3H), 6.94 (s, 1H), 6.31 (d, J = 15.0 Hz, 1H), 6.21 (d, J = 11.4 Hz, 1H), 5.80 (s, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.69 (s, 2H), 2.36 (d, J = 0.9 Hz, 3H), 2.15 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.1, 152.6, 145.0, 144.1, 143.4, 136.3, 135.9, 131.9 (2C), 128.5, 126.7, 125.2, 123.6, 121.3, 118.9, 59.6, 41.0, 24.5, 14.3, 14.0; HR-EIMS Calcd for C₂₀H₂₂O₂ (M⁺) 294.1616. Found 294.1618.

 $\label{eq:expectation} Ethyl~(2E,4E,6Z)-7-[(2S,4aR)-1,2,3,4,4a,5-hexahydro-1,1,5,5-tetra-methyl-2,4a-methanonaphthalen-7-yl]-3-methyl-2,4,6-octatrienoate$

15g

ĊO₂Et

(15h)

According to Method A, **15h** (42.3 mg, 75%) was obtained from vinyl triflate **14h** (56.9 mg, 0.162 mmol), stannanyl ester **11** (69.3 mg, 0.148 mmol), $Pd_2(dba)_3 \cdot CHCl_3$ (6.1 mg, 5.91 µmol), AsPh₃ (7.2 mg, 23.6 µmol) and CsF (44.9 mg, 0.295 mmol). Eluent: hexane/Et₂O = 40/1. Reaction time: 3 h.

15h: yellow oil; $[\alpha]_D^{27}$ -164 (*c* 1.04, MeOH); IR 2961, 2868, 1698, 1603, 1242, 1157 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 6.90 (dd, *J* = 15.3, 11.1 Hz, 1H), 6.14 (d, *J* = 15.3 Hz, 1H), 6.00 (d, *J* = 11.1 Hz, 1H), 5.72 (s, 1H), 5.42 (d, *J* = 0.6 Hz, 1H), 5.11 (d, *J* = 1.2 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.24 (d, *J* = 0.9 Hz, 3H), 1.95-1.89 (m, 1H), 1.93 (s, 3H), 1.79-1.75 (m, 1H), 1.70-1.62 (m, 2H), 1.54-1.46 (m, 1H), 1.30-1.25 (m, 4H), 1.16-1.06 (m, 1H), 1.13 (s, 3H), 1.09 (s, 3H), 1.04 (s, 3H), 0.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.3, 159.0, 153.2, 144.7, 134.0, 133.44, 133.40, 132.6, 126.0, 117.8, 111.1, 59.5, 56.0, 46.6, 43.2, 35.8, 33.7, 28.9, 27.5, 24.9, 24.8, 24.3, 24.2, 24.0, 14.3, 13.6; *Anal*. Calcd for C₂₆H₃₆O₂: C, 82.06; H, 9.53. Found: C, 81.80; H, 9.70; HR-EIMS Calcd for C₂₆H₃₆O₂ (M⁺) 380.2715. Found 380.2727.

Ethyl (2*E*,4*E*,6*Z*)-7-[(4*R*,4*aS*,6*R*)-4,4a,5,6,7,8-hexahydro-4,4adimethyl-6-(1-methylethenyl)-naphthalen-2-yl]-3-methyl-2,4,6-octa

trienoate (15i)

According to Method B, **15i** (72.3 mg, 84%) was obtained from vinyl triflate **14i** (79.0 mg, 0.225 mmol), stannanyl ester **11** (138 mg, 0.293

mmol), CsF (68.5 mg, 0.451 mmol), Pd(PPh₃)₄ (26.1 mg, 22.6 μ mol) and CuI (8.6 mg, 45.1 μ mol). Eluent: hexane/Et₂O = 40/1. Reaction time: 1.5 h.

15i: yellow oil; $[\alpha]_D^{25}$ +81.9 (*c* 1.44, MeOH); IR 2966, 2933, 1698, 1601, 1242, 1157 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 6.89 (dd, *J* = 15.5, 11.0 Hz, 1H), 6.13 (d, *J* = 15.5 Hz, 1H), 5.99 (d, *J* = 11.0 Hz, 1H), 5.70 (s, 1H), 6.58 (br s, 1H), 5.23 (br s, 1H), 4.71 (s, 2H), 4.13 (q, *J* = 7.0 Hz, 2H), 2.37 (br td, *J* = 7.5, 2.5 Hz, 1H), 2.32 (br t, *J* = 2.5 Hz, 2H), 2.22 (s, 3H), 2.16 (br tt, *J* = 12.5, 2.5 Hz, 1H), 1.93-1.90 (m, 1H), 1.91 (s, 3H), 1.80 (br dq, *J* = 12.5, 2.5 Hz, 1H), 1.73 (s, 3H), 1.29-1.24 (m, 1H), 1.26 (t, *J* = 7.0 Hz, 3H), 1.15 (t, *J* = 12.5 Hz, 1H), 1.03 (d, *J* = 7.5 Hz, 3H), 0.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.2, 153.1, 150.2, 146.1, 143.4, 135.3, 133.1, 132.9, 129.7, 126.2, 119.8, 118.0, 108.6, 59.5, 45.7, 42.2, 41.4, 38.4, 31.6, 31.4, 23.8, 20.9, 14.3 (2C), 13.64, 13.60; HR-EIMS Calcd for C₂₆H₃₆O₂ (M⁺) 380.2715. Found 380.2707.

Ethyl (2E,4E,6Z,8E)-3,7-dimethyl-9-[(1R)-6,6-dimethylbicyclo-

[3,1,1]hept-2-ene-2-yl]-2,4,6,8-nonatetraenoate (15j)

According to Method B, **15j** (36.4 mg, 29%) was obtained from vinyl triflate **14j** (114 mg, 0.385 mmol), stannanyl ester **11** (235 mg, 0.500 mmol), CsF (117 mg, 0.769 mmol), Pd(PPh₃)₄ (44.5 mg, 38.5 μ mol) and CuI (14.7 mg, 77.0 μ mol). Eluent: hexane/Et₂O = 40/1. Reaction time: 15 h.

ĊO₂Et

15i

15j: yellow oil; $[\alpha]_D^{25}$ +117 (*c* 1.56, MeOH); IR 2983, 2929, 1701, 1608, 1242, 1158 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.10 (dd, *J* = 15.0, 11.4 Hz, 1H), 6.71 (d, *J* = 15.9 Hz, 1H), 6.39 (d, *J* = 15.6 Hz, 1H), 6.12 (d, *J* = 15.0 Hz, 1H), 6.05 (d, *J* = 11.4 Hz, 1H) 5.77 (s, 1H), 5.73 (br s, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 2.67 (br t, *J* = 5.4 Hz, 1H), 2.53-2.47 (m, 1H), 2.42-2.34 (m, 1H), 2.38 (s, 3H), 2.15 (br s, 1H), 1.98 (s, 3H), 1.38 (s, 3H), 1.37-1.25 (m, 1H), 1.29 (t, *J* = 7.2 Hz, 3H), 1.17 (d, *J* = 8.7 Hz, 1H), 0.82 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.2, 152.7, 146.9, 138.2, 134.6, 132.4, 129.6, 128.7, 127.3, 120.9, 118.6, 59.6, 41.1, 40.9, 37.9, 32.3, 31.4, 26.4, 21.1, 20.9, 14.3, 13.9; HR-EIMS Calcd for C₂₂H₃₀O₂ (M⁺) 326.2246. Found 326.2226.

References

- 1) P. E. Ploreancig, D. L. Aubele, S. Wan, Angew. Chem. Int. Ed., 2005, 44, 3485-3488.
- 2) B. Domínguez, Y. Pazos, A. R. de Lera, J. Org. Chem., 2000, 65, 5917-5925.
- 3) A. Wada, Y. Nomoto, K. Tano, E. Yamashita, M. Ito, Chem. Pharm. Bull., 2000, 48, 1391-1394.
- 4) L. A. Paquette, C. S. Ra, S. D. Edmonson, J. Org. Chem., 1990, 55, 2443-2445.
- 5) T. Bunlaksananusorn, P. Knochel, J. Org. Chem., 2004, 69, 4595-4601.
- 6) B. Scheiper, M. Bonnekessel, H. Krause, A. Fürstner, J. Org. Chem., 2004, 69, 3943-3949.
- 7) P. E. Tessier, N. Nguyen, M. D. Clay, A. G. Fallis, Org. Lett., 2005, 7, 767-770.
- 8) Z. Ma, J. M. Bobbitt, J. Org. Chem., 1991, 56, 6110-6114.
- 9) J. E. Baldwin, S. P. H. Mee, V. Lee, Chem. Eur. J., 2005, 11, 3294-3308.
- 10) Y. L. Bennai, J. Org. Chem., 1996, 61, 3542-3544.

S22

S38

S43

S56

