Supplementary Information

Order-Disorder and Displacive Components in the Ferroelectric-Paraelectric Phase Transition of Potassium Titanyl Phosphate KTiOPO$_4$
by Masatomo Yashima and Takafumi Komatsu

For the high-temperature Pnna KTP there exist no displacements and polarization. For the low-temperature Pna21 KTP the average value of the displacements of each atomic species and polarization were calculated as follows.

Average value of the displacement of Ti atoms was estimated by
\[d(Ti) = \frac{c \cdot (4 \cdot z(Ti1) + 4 \cdot z(Ti2) - 1)}{8} \]
where \(c \), \(z(Ti1) \) and \(z(Ti2) \) are c-axis value, z coordinate of Ti1 atom and z coordinate of Ti2 atom, respectively. Contribution of Ti atoms to the polarization was calculated by
\[p(Ti) = c \cdot (4 \cdot z(Ti1) + 4 \cdot z(Ti2) - 1) \cdot C \cdot 10^{22}/V \]
where the \(C \) and \(V \) are the elementary charge=1.60218*10^-19 (C) and unit-cell volume, respectively.

Average value of the displacement of P atoms is estimated by
\[\text{distP} = \frac{c}{2} \cdot (zP1 + zP2 - 0.75) \]
where \(zP1 \) and \(zP2 \) are z coordinates of P1 and P2 atoms, respectively. Contribution of P atoms to the polarization was calculated by
\[pP = \frac{c}{\text{Vol}} \cdot 5(4 \cdot zP1 - 1 + 4 \cdot zP2 - 2) \cdot \text{Coulum} \cdot (10^8)^2 \cdot 10^6 \]
where the \(\text{Vol} \) and \(\text{Coulum} \) are unit-cell volume and elementary charge = 1.60218*10^-19 (C).

Average value of the displacement of K atoms is estimated by
\[\text{distK} = \frac{c}{8} \cdot \left[\text{gK1} \cdot (4 \cdot zK1 - 1) + \text{gK2} \cdot (4 \cdot zK2 - 1) + (1 - \text{gK0}) \cdot (4 \cdot zK1a - 1) + (1 - \text{gK2}) \cdot (4 \cdot zK2a - 1) \right] \]
where \(\text{gK1} \) is occupancy factor of K atom at the K1 site, \(zK1 \) is the z coordinate of K1 atom, \(\text{gK2} \) is occupancy factor of K atom at the K2 site, \(zK2 \) is the z coordinate of K2 atom, \(zK1a \) is the z coordinate of K1s atom, and \(zK2a \) is the z coordinates of K2a atom. Contribution of P atoms to the polarization was calculated by
\[pK = \frac{c}{\text{Vol}} \cdot \left[\text{gK1} \cdot (4zK1 - 1) + \text{gK2} \cdot (4 \cdot zK2 - 1) + (1 - \text{gK0}) \cdot (4 \cdot zK1a - 1) + (1 - \text{gK2}) \cdot (4 \cdot zK2a - 1) \right] \cdot \text{Coulum} \cdot (10^8)^2 \cdot 10^6 \]

Average value of the displacement of O atoms is estimated by
\[\text{distO} = c \cdot \left[\frac{14 \cdot (zO1 + zO2 + zO3 + zO4 + zO5 + zO6 + zO7 + zO8 + zO9 + zO10 - 3)}{40} \right] \]
where \(zOi \) is the z coordinate of Oi atom.
Average value of the displacement of O atoms is estimated by
\[pO = \frac{c}{\text{Vol}} \cdot \left[4 \cdot (zO1 + zO2 + zO3 + zO4 + zO5 + zO6 + zO7 + zO8 + zO9 + zO10 - 3) \right] \cdot \text{Coulum} \cdot (10^8)^2 \cdot 10^6 \]