Electronic Supplementary Information for

Unsuspected mesomorphism in “tail-free” cyclopalladated 3,5-disubstituted-2,2’-pyridylpyrroles

Daniela Pucci,* Iolinda Aiello, Alessia Aprea, Anna Bellusci, Alessandra Crispini* and Mauro Ghedini

Centro di Eccellenza CEMIF.CAL, LASCAM, CR-INSTM Unità INSTM della Calabria and Laboratorio Regionale Licryl CNR-INFM, Dipartimento di Chimica, Università della Calabria, 87030 Arcavacata di Rende (CS), Italy. Fax: 39 0984 492066; Tel: 39 0984 492064; E-mail: d.pucci@unical.it; a.crispini@unical.it

General Methods

1H NMR spectra were acquired on a Bruker Avance DRX-300 spectrometer in CDCl$_3$ solution, with TMS as internal standard. Infrared spectra were recorded with a Spectrum One FT-IR Perkin-Elmer spectrometer. Elemental analyses were performed with a Perkin-Elmer 2400 microanalyzer by the Microanalytical Laboratory at University of Calabria. The thermal behaviour of all samples was studied with a Zeiss Axioskop polarizing microscope equipped with a Linkam CO 600 heating stage. The transition temperatures and enthalpies were measured on a Perkin-Elmer Pyris1 Differential Scanning Calorimeter with a heating and cooling rate of 10 °C/min. The apparatus was calibrated with indium. Three heating/cooling cycles were performed on each sample. The powder X-ray diffraction patterns of 5 and 6 at variable temperature were obtained using a Bruker AXS General Area Detector Diffraction System (D8 Discover with GADDS) with Cu-Kα radiation ($\lambda = 1.5405$ Å). Measurements were performed by placing samples in Lindemann capillary tubes with an inner diameter of 0.5 mm. The highly sensitive area detector was placed at a distance of 20 cm from the sample (20 detector placed at 14°) and equipped with a CalCTec (Italy) heating stage. The samples were heated at a rate of 5.0 °C min$^{-1}$ to the appropriate temperature, and then cooled down at the same rate lowering the temperature step by step. XRD spectra in the mesophase were recorded with an exposure time of 2 hours.

All commercially available starting materials (Sigma-Aldrich Chemical Co) 1,1,1,5,5,5-hexafluoropentane-2,4-dione (98 %), 2-(aminomethyl)pyridine (99 %), tosic acid (98.5 %), palladium(II) acetate (99.98 %) were used as received without further purification.
Syntheses and Analytical Data

The 3,5-dimethyl-2-(2’-pyrydil)pyrrole (HL$_1$) has been prepared as reported in the literature (ref.7).

The 3,5-bis(trifluoromethyl)-2-(2’-pyrydil)pyrrole (HL$_2$) has been prepared as follow: 1,1,1,5,5,5-hexafluoropentane-2,4-dione (0.80 g, 3.85 mmol) and 2-(aminomethyl)pyridine (0.42 g, 3.85 mmol) along with a catalytic amount of tosic acid (0.11 g, 0.60 mmol) were added to xylenes (20 mL). The reaction flask was fitted with a Dean-Stark trap (xylenes, 20 mL) and a reflux condenser. The apparatus was flushed with nitrogen and stirred at room temperature for 30 min. The mixture was then heated to reflux (170 ºC) for 72 h with progressive additions of sulfuric acid (0.22 mL, 4.10 mmol). The reaction was monitored by GC/MS to monitor product formation. The mixture was extracted with a saturated solution of ammonium chloride and, following removal of solvent, the product was obtained as a green solid in a 48% yield (0.52 g,). M.p. 90°C.

1H NMR (CDCl$_3$, ppm) δ 10.60 (1H, br s, H$_1$), 8.60 (1H, d, H$_6'$), 7.84 (2H, m, H$_5'$H$_3'$), 7.30 (1H, t, H$_4'$), 6.89 (1H, s, H$_4$).

19F NMR (CDCl$_3$, ppm) δ 57.79 (s), 62.00 (s).

FT-IR (KBr, cm$^{-1}$): 3139, 2315, 1605.

Anal. Calc. for C$_{11}$H$_6$N$_2$F$_6$: C, 47.14; H, 2.14; N, 10.00 %. Found: C, 47.48; H, 2.34; N, 10.38 %.

Complex 1. To a stirred solution of Palladium(II) acetate (0.20 g, 0.89 mmol) in 15 mL of dichloromethane was added the stoichiometric amount of HL$_1$ (0.15 g, 0.89 mmol), the resulting red solution was stirred at room temperature for 2 h. The dark solution formed was evaporated under reduced pressure adding cyclohexane and methanol for eliminating the acetic acid formed. The dark purple product was recrystallized from chloroform and ethyl acetate. The solid was collected by filtration and dried under vacuum. Yield 0.17 g, 55%. M.p. 214° C.

1H NMR (CDCl$_3$, ppm) δ 7.36 (1H, d, H$_6'$), 7.28 (1H, t, H$_5'$), 6.82 (1H, d, H$_3'$), 6.30 (1H, t, H$_4'$), 5.15 (1H, s, H$_4$), 2.12 (3H, s, CH$_3$), 2.06 (3H, s, CH$_3$), 1.85 (3H, s, CH$_3$).

FT IR (KBr, cm$^{-1}$): 1608, 1564, 1490, 1417, 1355, 769.

Anal. Calc. for C$_{26}$H$_{28}$N$_4$O$_4$Pd$_2$: C, 46.36; H, 4.16; N, 8.32 %. Found: C, 46.57; H, 4.38; N, 8.72 %.

Complex 2. To a stirred solution of Palladium(II) acetate (0.20 g, 0.89 mmol) in 15 mL of dichloromethane was added the stoichiometric amount of HL$_2$ (0.25 g, 0.89 mmol), the resulting green solution was stirred at room temperature for 2 h. The brown-green solution formed was evaporated under reduced pressure adding cyclohexane and methanol to eliminate the acetic acid
formed. The greenish product was recrystallized from chloroform and ethyl acetate. The solid was collected by filtration and dried under vacuum. Yield 0.24 g, 30%. M.p. 265°C.

\[^1\text{H}\text{ NMR (CDCl}_3\text{, ppm) }\delta 7.73 (1\text{H, d, H}^6'), 7.62 (1\text{H, t, H}^5'), 7.46 (1\text{H, d, H}^3'), 6.75 (1\text{H, t, H}^4'), 6.38 (1\text{H, s, H}^4), 2.18 (3\text{H, s, CH}_3).\]

\[^{19}\text{F NMR (CDCl}_3\text{, ppm) }\delta 58.92 (s), 61.90 (s).\]

\[^1\text{H} \text{ NMR (CDCl}_3\text{, ppm) }\delta 8.08 (1\text{H, d, H}^6'), 7.52 (1\text{H, t, H}^5'), 7.21 (1\text{H, d, H}^3'), 6.66 (1\text{H, t, H}^4'), 5.68 (1\text{H, s, H}^4), 5.45 (1\text{H, s, H}^6), 2.33 (3\text{H, s, CH}_3), 2.32 (3\text{H, s, CH}_3), 2.07 (3\text{H, s, CH}_3), 2.04 (3\text{H, s, CH}_3).\]

\[^{19}\text{F NMR (CDCl}_3\text{, ppm) }\delta 43.43 (s), 44.24 (s).\]

\[^1\text{H} \text{ NMR (CDCl}_3\text{, ppm) }\delta 7.81 (1\text{H, d, H}^6'), 7.55 (1\text{H, t, H}^5'), 7.20 (1\text{H, d, H}^3'), 6.67 (1\text{H, t, H}^4'), 6.29 (1\text{H, s, H}^4), 5.65 (1\text{H, s, H}^6), 2.31 (3\text{H, s, CH}_3), 2.26 (3\text{H, s, CH}_3).\]

\[^{19}\text{F NMR (CDCl}_3\text{, ppm) }\delta 43.43 (s), 44.24 (s).\]
Complex 6.
Yield 63%. 1H NMR (CDCl$_3$, ppm) δ 8.15 (1H, d, H$_{6'}$), 7.92 (1H, t, H$_{5'}$), 7.84 (1H, d, H$_{3'}$), 7.19 (1H, t, H$_{4'}$), 6.78 (1H, s, H$_\alpha$), 6.43 (1H, s, H$_4$).
19F NMR (CDCl$_3$, ppm) δ 43.89 (s), 44.37 (s), 58.20 (s), 62.14 (s).
FT IR: (KBr, cm$^{-1}$)1630, 1569, 1532, 1472, 1260, 1226, 1150, 1108, 997, 775, 743.

Anal.Calc. for C$_{16}$H$_{12}$N$_2$O$_2$F$_6$Pd: C, 39.67; H, 2.48; N, 5.78 %. Found: C, 40.06; H, 2.11; N, 5.73 %.

Anal.Calc. for C$_{16}$H$_{12}$N$_2$O$_2$F$_{12}$Pd. C, 32.43; H, 1.01; N, 4.73 %. Found: C, 32.53; H, 0.94; N, 5.01 %.
DSC Measurements

Figure S1. DSC thermograms for complex 5 a) second heating and b) second cooling scan.

Figure S2. DSC thermograms for complex 6 a) second heating and b) second cooling scan.
Powdered X-ray diffraction

![X-ray diffraction pattern](image)

Figure S3. X-Ray diffraction pattern of complex 6 (140 °C on cooling).

X-RAY DIFFRACTION DATA DETAILS

X-ray Crystallography.

Suitable crystals for the X-ray analysis for complexes 3-6 were obtained by layering ethyl ether on dichloromethane solutions. The intensity data were collected at room temperature on a Bruker-Nonius X8 Apex CCD area detector single crystal diffractometers both equipped with graphite monochromator and MoKα radiation (λ = 0.71073 Å). Data were processed through the SAINT S1 reduction and SADABS S2 absorption software. The structures were solved by direct methods through the SHELXTL-NT S3 structure determination package and refined by full-matrix least-squares based on F^2. Generally, all non-hydrogen atoms were refined anisotropically and hydrogen
atoms were included as idealized atoms riding on the respective carbon atoms with C-H bond lengths appropriate to the carbon atom hybridization. In the case of complex 5, the fluorine atoms of one the CF$_3$ group of the hexafluoroacetylacetonate ligand are disordered in two sets A and B with group occupancy of about 0.5 and therefore introduced in the refinement isotropically.

References to Supplementary Information

S1 SAINT, Version 6.45 Copyright (c) 2003, Bruker Analytical X-ray Systems Inc.
S3 SHELXTL-NT, Version 5.1 Copyright (c) 1999, Bruker Analytical X-ray Systems Inc.