Electronic Supporting Information

Detection of Hg$^{2+}$ by Cyanobacteria in Aqueous media.
Moorthy Suresh, Sanjiv K. Mishra, Sandhya Mishra* and Amitava Das*

Contents

1. Absorption spectrum of C-Phycocyanin S1
2. Emission spectrum of C-Phycocyanin S2
3. Emission spectra with different metal ions S3
4. Absorption spectrum of phycocyanobilin in phosphate buffer S4
5. Absorption spectrum of phycocyanobilin in water S5
6. Binding constant for C-PC with various cations in phosphate buffer: S6
7. Mass spectrum of phycocyanobilin S7
8. Mass spectrum of phycocyanobilin with Hg$^{2+}$ S8
9. IR spectrum of phycocyanobilin S9
10. IR spectrum of phycocyanobilin with Hg$^{2+}$ S10
11. Confocal images in different time interval S11
12. Competitive metal ion study S12
13. HPLC study S13
14. 1H NMR spectra for phycocyanobilin S14
1. **Absorption spectrum of C-Phycocyanin.**

![Absorption spectrum of C-Phycocyanin](image)

Figure S1 : Absorption spectrum of C-Phycocyanin (2.57×10^{-8} M) with phosphate buffer at pH 7.2.
2. Emission Spectrum of C-Phycocyanin.

Figure S2: Fluorescence emission spectrum of C-Phycocyanin (2.57 x 10^{-8} M) with phosphate buffer at pH 7.2. Excitation at 580 nm.
3. Emission spectra with different metal ions.

Figure S3: Changes in emission spectra of C-PC upon addition of different metal ions in phosphate buffer at pH 7.2. Excitation wavelength that was used for studies is 580 nm.
4. Absorption spectrum of Phycocyanobilin in phosphate buffer:

Figure S4: Absorption spectrum of phycocyanobilin (1 x 10^{-4}M) in phosphate buffer at pH 7.2.
5. Absorption spectrum of Phycocyanobilin in water:

Figure S5: Absorption spectrum of phycocyanobilin (1.0 x 10^{-4}M) in water
6. Binding constant for C-PC with various cations in phosphate buffer (pH = 7.2):

<table>
<thead>
<tr>
<th>Metal ions</th>
<th>Binding constant (K_b)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$^+$</td>
<td>$-$</td>
</tr>
<tr>
<td>K$^+$</td>
<td>$-$</td>
</tr>
<tr>
<td>Cs$^+$</td>
<td>$-$</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>$(2.5\pm0.10)\times10^3\text{M}^{-1}$</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Sr$^{2+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Ba$^{2+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Cr$^{3+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Fe$^{3+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Ni$^{2+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Cu$^{2+}$</td>
<td>$(3.0\pm0.15)\times10^3\text{M}^{-1}$</td>
</tr>
<tr>
<td>Hg$^{2+}$</td>
<td>$(2.7\pm0.2)\times10^4\text{M}^{-1}$</td>
</tr>
<tr>
<td>Cd$^{2+}$</td>
<td>$(3.1\pm0.2)\times10^3\text{M}^{-1}$</td>
</tr>
<tr>
<td>Co$^{2+}$</td>
<td>$-$</td>
</tr>
<tr>
<td>Zn$^{2+}$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

aBinding constant for each metal ions is an average of five independent experiments. Values were evaluated based on the fluorescence titration at room temperature. Spectral changes for Na$^+$, K$^+$, Cs$^+$, Mg$^{2+}$, Sr$^{2+}$, Ba$^{2+}$, Cr$^{3+}$, Fe$^{3+}$, Ni$^{2+}$, Co$^{2+}$ and Zn$^{2+}$ were not significant to enable us to evaluate respective binding constant values.
7. Mass spectra of Phycocyanobilin:

Exact mass:
Phycocyanobilin + H⁺ m/z = 587.2869

Fig S6: ESI-mass spectrum of phycocyanobilin extracted from *C-Phycocyanin* using Micromass Q-Tof micro™, equipped with ESI source and Q-Tof analyzer.
8. Mass spectra of Phycocyanobilin with Hg\(^{2+}\):

m/z = 811 Corresponds to Phycocyanobilin + Hg\(^{2+}\) + 23.
m/z for Na\(^+\) ion = 23

Fig S7: ESI-mass spectrum of ESI-mass spectrum of phycocyanobilin with Hg\(^{2+}\) using Micromass Q-Tof micro\(^\text{TM}\), equipped with ESI source and Q-Tof analyzer.
9. IR spectra of Phycocynobilin:
10. IR spectra of Phycocynobilin with Hg$^{2+}$:
11. Confocal images at different time intervals:

Fig S8. Confocal images of *spirulina platensis* with 10 μM Hg$^{2+}$ in 1:1 water / ethanol when exposed to 20 μM L$_1$ in a different time interval.
12. Fluorescence competitive metal ion study of C-PC with Hg^{2+}:

![Graph showing emission spectra of C-PC and C-PC+Hg^{2+} with various other metal ions](image)

Fig S9: Change in the emission spectra of C-PC (4.0 x 10^{-8} M) in the presence of Hg^{2+} (8.0 x 10^{-4} M) with various other metal ions (Co^{2+}, Ni^{2+}, Cu^{2+}, Ca^{2+}, Cd^{2+}, Sr^{2+}, Mg^{2+}, Zn^{2+}, Na^{+}, K^{+}, Li^{+}, Fe^{3+}) (8.0 x 10^{-3} M) in phosphate buffer at pH 7.2. Excitation at 580 nm.
13. HPLC study:

Purity of phycocyanobilin sample is further demonstrated by HPLC studies. A Waters HPLC system 2695 separation module (Alliance) coupled with Waters 2696 photodiode array UV-vis detector (PDA) was used for the HPLC separations on analytical C₈ column, 25cm x 4.6mm, 5μm. The column is equilibrated with mobile combination of 95% water and 5% methanol (0.1% acetic acid). The flow rate was 0.5 ml/min. The PDA detector was set to monitor the absorbance of eluent at 590 nm. Two fractions of phycocyanobilin chromophore were found in HPLC chromatogram at tᵣ = 1.8 min, (69.37%) and tᵣ = 2.0 min (30.63%) which corresponds to the existence of cis-trans isomers of phycocyanobilin.

Fig S10: HPLC profile of phycocyanobilin using analytical C₈ column (25cm x 4.6mm) and water/CH₃OH (95:5, v/v). Figure (a) shows the profile with 10 min retention time, while (b) shows retention time upto 50 minutes.
14. 1H NMR spectra for phycocyanobilin in CDCl$_3$:

![NMR Spectra](image)

Fig S11: 1H NMR spectra for phycocyanobilin in CDCl$_3$