Supporting Information for

From one to three: a serine derivate manipulated homochiral metal-organic framework

Miao Wang, Ming-Hua Xie, Chuan-De Wu* and Yan-Guang Wang*
Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
Email: cdwu@zju.edu.cn

Experimental Section

Materials and General Procedures. All of the chemicals were obtained from commercial sources and used without further purification. The determinations of the unit cell and data collection for the crystal of compound 1 were performed on a Siemens SMART CCD APEX II. The data were collected using graphite–monochromatic Mo-Kα radiation (λ = 0.71073 Å) at 293 K. The data sets were corrected by SADABS program.1 The structure was solved by direct method, and refined by full-matrix least-square method with the SHELXTL-97 program package.2 H atoms on C and N atoms were generated geometrically. The H-atoms of the water molecule were clearly visible in a different map and were handled in the subsequent refinement with fixed isotropic displacement parameters. All of the reactions and manipulations were carried out under Nitrogen with the use of standard inert atmosphere and Schlenk techniques. Solvents used in all the reactions were dried by standard procedures.3 1H NMR spectra were recorded on 400 MHz spectrometer in CDCl3 solution and the chemical shifts were reported relative to internal standard TMS (0 ppm). The following abbreviations are used to describe peak patterns where appropriate: b = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Substituted substrates were synthesized according to literature method.4

Biginelli reaction of benzaldehyde, urea and ethyl acetoacetate with solid catalyst 1. A mixture of benzaldehyde (0.1 mmol), urea (0.1 mmol), ethyl acetoacetate (0.1 mmol), solid 1 (0.01 mmol) and CH2Cl2 (2mL) was stirred at 40 °C for 12 h in a Schlenk flask. DMF was added to dissolve the produced white
precipitation. The mixture was filtered, extracted with ether, dried over sodium sulfate and concentrated in vacuum. The residue was subjected to chromatography on silica gel to give the isolated yield.

A typical procedure for 1,2-addition of Grignard reagent to α, β-unsaturated ketones with solid catalyst 1. To a 5 mL Schlenk flask, solid catalyst 1 (0.01 mmol) was added, after pump dried under vacuum at 70°C for 2 h, α, β-unsaturated ketone (0.1 mmol) was added, and then dried THF (2 ml) was added by syringe, followed by adding Grignard reagent (0.12 mmol) dropwise under N₂ at 0 °C. The reaction mixture was stirred and allowed to warm to ambient temperature over 12 h, and then quenched with saturated ammonium chloride solution (2 ml). The mixture was extracted with ether, dried over sodium sulfate and concentrated in vacuum to give crude product. An aliquot was analyzed on GC to give the conversion and ee% values.

5-acetyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-one: ¹H NMR(CDCl₃): δ9.18 (1H, s), 7.82 (1H, s), 7.24-7.35 (5H, m), 5.26 (1H, d, J = 3.2Hz), 2.29 (3H, s), 2.10 (3H, s). HPLC condition: (Chiralcel AD-H column, eluent: 2-Propanol : Hexane = 20 : 80, flow rate: 1 mL/min): t₁ = 8.5 min; t₂ = 10.4 min.

2-cyclohexyl-4-phenylbut-3-en-2-ol (Table 1, entry 1): ¹H NMR(CDCl₃): δ7.24-7.42 (5H, m), 6.59 (1H, d, J=16 Hz), 6.31 (1H, d, J = 16.4 Hz), 1.55-1.82 (4H, m), 1.43-1.49 (1H, m), 1.37 (3H, s), 1.03-1.28 (6H, m). GC condition: (Supelco β-Dex 120, 30 m × 0.25 mm × 0.25 μm, Detector t: 250°C, Ejector t: 250°C, Column t: 220 °C, support gas: N₂ 0.1mL/min): t₁ = 9.3 min, t₂ = 9.8 min.

1-cyclohexyl-3-phenylprop-2-en-1-ol (Table 1, entry 5): ¹H NMR(CDCl₃): δ7.25-7.41 (5H, m), 6.55 (1H, d, J=16 Hz), 6.24 (1H, q, J = 7.7 Hz), 4.02 (1H, m), 1.67-1.77 (4H, m), 1.50-1.53 (1H, m), 1.04-1.29 (6H, m). GC condition: (Supelco β-Dex 120, 30 m × 0.25 mm × 0.25 μm, Detector t: 250°C, Ejector t: 250°C, Column t: 220 °C, support gas: N₂ 0.1mL/min): t₁ = 9.8 min, t₂ = 11.0 min.
2-cyclohexyl-4-p-tolylbut-3-en-2-ol (Table 1, entry 6): $^1$H NMR(CDCl$_3$): $\delta$ 7.28 (1H, d, J=8.4 Hz), 7.12 (1H, d, J=7.6 Hz), 6.59 (1H, d, J=16.4 Hz), 6.31 (1H, d, J = 16.4 Hz), 2.33 (3H, s), 1.76-1.87 (4H, m), 1.39-1.45 (1H, m), 1.34 (3H, s), 0.97-1.26 (6H, m). GC condition: (Supelco β-Dex 120, 30 m × 0.25 mm × 0.25 μm, Detector t: 250 °C, Ejector t: 250 °C, Column t: 220 °C, support gas: N$_2$ 0.1mL/min): $t_1$ = 11.9 min, $t_2$ =12.9 min.

4-(4-chlorophenyl)-2-cyclohexylbut-3-en-2-ol (Table 1, entry 7): $^1$H NMR(CDCl$_3$): $\delta$ 7.27-7.34 (5H, m), 6.61 (1H, d, J=16 Hz), 6.35 (1H, d, J = 16 Hz), 1.77-1.87 (4H, m), 1.60-1.61 (1H, m), 1.56 (3H, s), 0.86-1.25 (6H, m). GC condition: (Supelco β-Dex 120, 30 m × 0.25 mm × 0.25 μm, Detector t: 250 °C, Ejector t: 250 °C, Column t: 220 °C, support gas: N$_2$ 0.1mL/min): $t_1$ = 12.3 min, $t_2$ = 12.8 min.

References:
Figures

**Figure S1.** Top and side views of the double-Layer framework of 1.
Figure S2. Packing diagram of 1 viewed down the $a$ axis.

Figure S3. Packing diagram of 1 viewed down the $b$ axis.
Figure S4. Packing diagram of 1 viewed down the c axis.

Figure S5. Thermogravimetric analysis curve of 1.
After heating at 110 °C for 5 h

Figure S6. Powder X-ray diffraction patterns for compound 1.
### Table S1. Crystal data and structure refinements for [Cu2L2Cl2]·H2O (1)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C18 H22 Cl2 Cu2 N4 O7</td>
</tr>
<tr>
<td>Formula weight</td>
<td>604.38</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.07 × 0.10 × 0.15</td>
</tr>
<tr>
<td>Crystal color</td>
<td>Blue</td>
</tr>
<tr>
<td>Crystal system, Space group</td>
<td>Monoclinic, P2₁</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3787(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>6.6130(1)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>16.8336(2)</td>
</tr>
<tr>
<td>β (°)</td>
<td>103.344(1)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>1124.17(3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Calculated density (g·cm⁻³)</td>
<td>1.785</td>
</tr>
<tr>
<td>F(000)</td>
<td>612</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>2.178</td>
</tr>
<tr>
<td>θ for data collection (°)</td>
<td>1.24 to 27.56</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-13≤h≤13, -8≤k≤8, -21≤l≤21</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>9767 [R(int) = 0.0262]</td>
</tr>
<tr>
<td>Data / parameters</td>
<td>4669 / 304</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.989</td>
</tr>
<tr>
<td>R1 (wR2) [I &gt; 2σ(I)]</td>
<td>0.0371 (0.0682)</td>
</tr>
<tr>
<td>R1 (wR2) (all data)</td>
<td>0.0541 (0.0746)</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.017(12)</td>
</tr>
<tr>
<td>Largest diff. peak and hole (e·Å³)</td>
<td>0.445 and -0.375</td>
</tr>
</tbody>
</table>

R1 = \( \frac{\sum|F_o| - |F_c|}{\sum|F_o|} \), wR2 = \( \frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2} \)^{0.5}.  

R1 = \( \frac{\sum|F_o| - |F_c|}{\sum|F_o|} \), wR2 = \( \frac{\sum w(F_o^2 - F_c^2)^2}{\sum w(F_o^2)^2} \)^{0.5}.
### Table S2. Selected bond lengths (Å) and angles (°) for 1.

<table>
<thead>
<tr>
<th>Bond lengths</th>
<th>Bond angles</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)-O(5)</td>
<td>1.973(3)</td>
<td>O(2)-Cu(2)-N(3) 90.6(1)</td>
</tr>
<tr>
<td>Cu(1)-N(1)</td>
<td>1.989(3)</td>
<td>O(2)-Cu(2)-N(2) 82.3(1)</td>
</tr>
<tr>
<td>Cu(1)-N(4)i</td>
<td>2.016(3)</td>
<td>N(3)-Cu(2)-N(2) 163.7(1)</td>
</tr>
<tr>
<td>Cu(1)-Cl(1)</td>
<td>2.263(1)</td>
<td>O(2)-Cu(2)-Cl(2) 169.9(1)</td>
</tr>
<tr>
<td>Cu(1)-O(6)i</td>
<td>2.392(3)</td>
<td>N(3)-Cu(2)-Cl(2) 94.2(1)</td>
</tr>
<tr>
<td>Cu(2)-O(2)</td>
<td>1.957(3)</td>
<td>N(2)-Cu(2)-Cl(2) 95.2(1)</td>
</tr>
<tr>
<td>Cu(2)-N(3)</td>
<td>1.981(3)</td>
<td>O(2)-Cu(2)-Cl(2)ii 81.4(1)</td>
</tr>
<tr>
<td>Cu(2)-N(2)</td>
<td>2.023(3)</td>
<td>N(3)-Cu(2)-Cl(2)ii 93.0(1)</td>
</tr>
<tr>
<td>Cu(2)-Cl(2)</td>
<td>2.263(1)</td>
<td>N(2)-Cu(2)-Cl(2)ii 100.3(1)</td>
</tr>
<tr>
<td>Cu(2)-Cl(2)ii</td>
<td>3.001(1)</td>
<td>Cl(2)-Cu(2)-Cl(2)ii 89.4(1)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: i) x, y-1, z+1; ii) -x-2, y+1/2, -z.