Figure S1: 27Al MAS NMR spectra of (a) Al-MWW(P), (b) silylated Al-MWW(P), (c) Al-IEZ-MWW and (d) Al-MWW.
Electric Supporting Information 2

29Si MAS NMR

Fig. S2 29Si MAS NMR of (a) Al-MWW(P), (b) silylated Al-MWW(P) and (c) Al-IEZ-MWW.

D2 and D1 peaks in Fig. S2(b) are corresponding to the interlayer-modified dimethylsilane species, and the dimethylsilane species reacted with silanols on the external surface, respectively. Q2 peak in Fig. S2(c) is corresponding to the monomeric silica puncheons. After the silylation and the following calcination, the intensity of Q3 peak was clearly minimized, due to the interlayer-silylation.
Electric Supporting Information 3
Cyclohexane adsorption isotherms

Figure S3 Cyclohexane adsorption isotherms of Al-IEZ-MWW (●) and Al-MWW (○).
Electric Supporting Information 4

Micropore size distribution (from argon adsorption-desorption isotherm)

Figure S4 Micropore size distributions of (a) Al-MWW and (b) Al-IEZ-MWW.
Electric supporting Information 5
NH₃ temperature-programmed desorption (TPD) profiles

Figure S5 NH₃-TPD profiles of (a) Al-MWW, (b) Al-IEZ-MWW and (c) Al-beta.
Electric Supporting Information 6

Set up of autoclave

Figure S6 Set up of an autoclave for the vapor-phase silylation of Al-MWW(P).