Supporting Information

Asymmetric Induction of Supramolecular Helicity in Calix[4]arene-based Triple-Stranded Helicate

Takeharu Haino,* Hidemi Shio, Ryuji Takano and Yoshimasa Fukazawa Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan Synthetic procedures.

To a solution of the benzoic acid (540 mg, 1.6 mmol), and HOBt (220 mg, 1.6 mmol) in DMF (30 ml) was added WSCI•HCl (310 mg, 1.6 mmol), and the diaminocalix[4]arene (500 mg, 0.8 mmol). After stirred at room temperature for 4 h, the reaction mixture was poured into 1N hydrochloric acid and extracted with EtOAc. The organic layer was washed with aqueous sodium bicarbonate, dried over sodium sulfate, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (CH₂Cl₂) to give the desired calixarene as a white solid (850 mg, 85%). M.p. 259–261 °C; ¹H NMR (300 MHz, CDCl₃) δ 9.96 (s, 2H), 7.88 (d, 2H, *J* = 6.0 Hz), 7.53–7.20 (m, 24H), 7.05 (s, 4H), 6.10–6.30 (m, 6H), 5.20 (s, 8H), 4.36 (d, 4H, *J* = 13.2 Hz), 3.95 (t, 4H, *J* = 7.8 Hz), 3.67(t, 4H, *J* = 7.8 Hz), 3.00 (d, 4H, *J* = 13.2 Hz), 1.88 (sext, 8H, *J* = 7.2 Hz), 1.10 (t, 6H, *J* = 7.2 Hz), 1.20 (t, 6H, *J* = 7.2 Hz); ¹³C NMR (75MHz, CDCl₃) δ 162.4, 155.1, 154.3, 151.7, 146.5, 136.9, 136.4, 136.0, 133.0, 132.0, 129.2, 128.9, 128.8, 128.7, 128.3, 127.7, 127.5, 124.6, 123.6, 122.0, 120.5, 117.3, 77.2, 76.9, 76.5, 71.4, 30.9, 23.5, 22.9, 10.8, 9.9; IR (KBr) 3341, 1668, 1541 cm⁻¹; HR MS (FAB⁺) *m/z*, calcd for C₈₂H₈₃N₂O₁₀ [M+H]⁺ 1255.6047, found 1255.6031; Anal. Calcd for C₈₂H₈₂N₂O₁₀•0.5H₂O: C 77.88, H 6.62, N 2.22. Found: C 77.86, H 6.54, N 2.21.

The above calix[4]arene derivative (300 mg, 0.24 mmol) were dissolved in EtOAc (10 ml) and THF (30 ml) in the presence of Pd/C (30 mg). After being stirred overnight under H₂ atmosphere at 45 °C, the reaction mixture was filtered over celite column. The filtrate was concentrated in vacuo. The residue was purified by recrystallized from methanol to give white solid **2** (190 mg, 90%). M.p. 282–285 °C; ¹H NMR (300 MHz, CDCl₃) δ 12.41 (s, 2H), 7.50 (s, 2H), 6.93 (d, 4H, *J* = 7.5 Hz), 6.92 (d, 2H, *J* = 7.8 Hz), 6.82 (t, 2H, *J* = 7.5 Hz), 6.68 (d, 2H, *J* = 7.8 Hz), 6.60 (s, 4H), 6.46 (t, 2H, *J* = 7.8 Hz), 5.68 (s, 2H), 4.48 (d, 4H, *J* = 13.0 Hz), 3.97 (t, 2H, *J* = 7.5 Hz), 3.76 (t, 2H, *J* = 7.5 Hz), 3.20 (d, 4H, *J* = 13.0 Hz), 2.10–1.86 (m, 8H), 1.05 (t, 6H, *J* = 7.5 Hz), 0.95 (t, 6H, *J* = 7.5 Hz); ¹³C NMR (75MHz, CDCl₃) δ 168.1, 157.1, 153.9, 148.9, 145.8, 135.6, 135.1, 130.1, 128.7, 122.4, 121.3, 118.6, 118.2, 115.7, 114.1, 77.3, 76.7, 37.0, 23.3, 23.0, 10.5, 10.1; IR (KBr) 3382, 1644, 1462 cm⁻¹; HR MS (FAB⁺) *m/z*, calcd for C₅₄H₅₈N₂O₁₀ [M]⁺ 894.4091, found 894.4120; Anal. Calcd for C₅₄H₅₈N₂O₁₀: C 72.46, H 6.53, N 3.13. Found: C 72.06, H 6.38, N 3.11.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

A 0.42 M solution of KOH (30 µl, 0.0125 mmol) in CH₃OH, and Ga(acac)₃ (1.48 mg, 0.004 mmol) was added to a solution of **2** (5.1 mg, 0.0057 mmol) in CH₃OH. The reaction mixture was stirred for 1h, and the solvent was removed in vacuo. The crude compound was washed with acetone to give desired compound $\mathbf{1}_a$ (5.6 mg, 90%). M.p. >300 °C; ¹H NMR (300 MHz, CD₃OD) δ 7.18 (d, 12H, J = 7.5 Hz), 7.05 (dd, 6H, J = 8.1, 1.5 Hz), 6.93 (t, 6H, J = 7.5 Hz), 6.74 (dd, 6H, J = 7.5, 1.5 Hz), 6.39 (dd, 6H, J = 8.1, 7.5 Hz), 6.37 (s, 12H), 4.56 (d, 12H, J = 12.9 Hz), 4.21(m, 12H), 3.75 (t, 12H, J = 6.6 Hz), 3.25 (d, 12H, J = 12.9 Hz), 2.22–1.90 (m, 24H), 1.19 (t, 18H, J = 7.5 Hz), 0.98 (t, 18H, J = 7.2 Hz).

Figure S1. ¹H NMR spectra of 1_a (3.7 x 10⁻³ M) in the presence of Ga(acac)₃ in CD₃OD at 298K. The concentrations of Ga(acac)₃ are (a) 0.0, (b) 1.1×10^{-3} , (c) 2.5×10^{-3} , (d) 3.7×10^{-3} mol L⁻¹.

Figure S2. Job plot for dianion 2^{2-} with Ga(acac)₃ in CH₃OH at 298 K.

Figure **S3**. Stejskal-Tanner plots for 1_a (red circle) and **2** (blue triangle).

Figure S4. Absorption spectra of dianion 2^{2-} (3.9 × 10^{-5} mol L⁻¹) in the presence of Fe(acac)₃ in CH₃OH at 298K. The concentrations of Fe(acac)₃ are from the bottom (a) 0.0, (b) 0.8×10^{-5} , (c) 2.0×10^{-5} , (d) 2.6×10^{-5} , (e) 3.9×10^{-5} , (f) 7.8×10^{-5} mol L⁻¹.

Figure S5. Job plot for 1_a with guest 3 in methanol- d_4 at 293 K.

Figure S6. ¹H NMR spectra of 3 (0.9 mmol L⁻¹) in the presence of $\mathbf{1}_a$ in CD₃OD at 298K. The concentrations of $\mathbf{1}_a$ are (a) 0.0, (b) 0.09, (c) 0.45, (d) 0.9 mmol L⁻¹.

Figure **S7**. The CIS of the protons of **3** during the complexation with 1_a . The values in the parentheses indicate the CIS of the protons upon the addition of the large excess of K₆Ga(cat)₃ instead of 1_a .

Figure S8. ¹H NMR spectra of 4 (5.8 mmol L^{-1}) in the presence of $\mathbf{1}_{a}$ in CD₃OD at 298K. The concentrations of

 $\mathbf{1}_{a}$ are (a) 0.0, (b) 0.58, (c) 1.74 mmol L⁻¹.

Figure S9. The CIS of the protons of **4** upon the addition of 0.1 equivalent of $\mathbf{1}_{a}$. The values in the parentheses indicate the CIS of the protons upon the addition of 0.1 equivalent of K₆Ga(cat)₃ instead of $\mathbf{1}_{a}$.

Figure **S10**. Absorption and circular dichroism spectra of $\mathbf{1}_{a}$ (black), $\mathbf{1}_{b}$ (green), $\mathbf{1}_{a}$ (0.0066 mmol L⁻¹) with 197 eq. of *D*-3 (blue solid) and with 197 eq. of *L*-3 (blue dash), $\mathbf{1}_{b}$ (0.0063 mmol L⁻¹) with 206 eq. of *D*-3 (red solid) and with 206 eq. of *L*-3 (red dash) in methanol at 273K.