Electronic Supplementary Information (ESI)

Paramagnetic Gd-based gold glyconanoparticles as probes for MRI: tuning relaxivities with sugars

Marco Marradi, David Alcántara, Jesús Martínez de la Fuente, María Luisa García-Martín, Sebastián Cerdán and Soledad Penadés*

Laboratory of GlycoNanotechnology, CIC biomaGUNE/CIBER-BBN and IIQ-CSIC, Pº Miramón 182, Parque Tecnológico de San Sebastián, E-20009, San Sebastián, Spain.

‡ Current address: Instituto de Nanociencia de Aragón, University of Zaragoza, E-50009, Zaragoza, Spain.

E-mail: spenades@cicbiomagune.es

Experimental Section

General: 1H NMR spectra were acquired on a Bruker DRX-300 spectrometer. TEM examination was carried out at 200 KeV with Philips CM200 microscope. Elemental analyses were carried out in a LECO CHNS-932 apparatus. ICP analyses were performed in an Iris Advantage apparatus (Termo Jarrell Ash, Franklin, MA, USA). UV spectra were obtained with a UV/vis Perkin-Elmer Lambda 12 spectrophotometer.

The glycoconjugate glc_2S was synthesized as previously reported.1,5 Glc_5S and gal_2S were obtained by methanolysis of the corresponding peracetylated derivatives, in turn prepared using their n-pentenyl glycosides as precursors.2,5 Lac_5S was prepared by glycosidation of 5-(S-acetyl) mercaptopentan-1-ol with the perbenzoylated lactose, using the trichloroacetimidate method.3,5 DO3AC$_3$S and DO3AC$_{11}$S were synthesized by alkylation of commercial DO3A-tBu with 5-bromo-1-(S-trityl) mercaptopentane or with 11-bromo-1-(S-trityl) mercaptoundecane, and subsequent deprotection of both t-butyl esters and trityl group in acidic conditions by using a modification of a reported procedure.4,5
Preparation of the paramagnetic Gd-based gold glyconanoparticles: The gold glyconanoparticles (GNPs) incorporating DO3A derivatives were prepared following the procedure reported in references 1S and 3S. Gd(III) complexation was carried out by adding an excess of aqueous solution of GdCl₃ (0.1 M) to a solution of GNPs in HEPES buffer (0.1 M, pH = 7.4). The mixture was orbital shaken in dark for 24 h. A solution of EDTA (0.1 M, pH = 7.4, same excess of GdCl₃) was then added and the mixture was shaken for 1 h. The mixture was centrifugal filtered (Centricon, MW=10000, 3000g) and the residue was washed with water (MilliQ, 18 μM) until free Gd(III) was no more detected by xylenol orange.
colorimetric assay (pH~7).55 The residue on top of the filter was dissolved in water and lyophilized to obtain the corresponding Gd(III)-GNPs as a black powder.

lacC5S-Au-SC11DO3A: 7.3 mg were obtained as a black powder from DO3AC11S (5.0 mg, 4.7·10⁻³ mmol, 0.3 eq) in H₂O (391 μL) and lacC5S (37.5 mg, 0.0422 mmol, 2.7 eq) in MeOH (3.52 mL). ¹H NMR (300 MHz, D₂O, δ, detected signals): 4.35 (bs, 2H, H-1, H1´ lactose), 4.1-3.0 (bm, 16H), 2.0-1.0 (bm, 10H); IR (KBr): ν = 3423 (s), 2923 (w), 2852 (w), 1637 (m), 1406 (w), 1076 cm⁻¹ (s); UV-vis (water): λ_max = 515 nm (surface plasmon band); TEM: 3.2 ± 0.4 nm; Anal. calcd for Au₁₂₈₉(C₁₇H₃₁O₁₁S)₄₆₉(C₂₅H₄₇N₄O₆S)₁₀₉: C 24.71; H 3.89; N 1.17; S 3.56; found: C 24.57; H 4.22; N 1.17; S 3.74.

lacC5S-Au-SC11DO3A-Gd (8): lacC5S-Au-SC11DO3A (202.2 mg, 3.89·10⁻⁴ mmol) in 15 mL of 0.1 M HEPES buffer was first treated with 1.44 mL of GdCl₃ 0.1 M (3.4 eq) and then with 1.44 mL of EDTA 0.1 M. After washing, the Gd-complexed GNP (188.6 mg, 3.61·10⁻⁴ mmol) was obtained as black powder. ¹H NMR signals of the paramagnetic GNPs are too wide to be assigned; TEM: 3.1 ± 0.8 nm; IR (KBr): ν = 3419 (s), 2923 (w), 2854 (w), 1635 (m), 1406 (w), 1072 cm⁻¹ (s); UV-vis (water): λ_max = 515 nm (surface plasmon band); Anal. calcd for Au₁₂₈₉(C₁₇H₃₁O₁₁S)₄₆₉(C₂₅H₄₇N₄O₆S)₁₀₉Gd₁₇: Gd 0.51; found (ICP): Gd 0.5.

glcC2S-Au-SC11DO3A-Gd (5): glcC2S-Au-SC11DO3A (146.8 mg, 4.08·10⁻⁴ mmol) in 15 mL of HEPES buffer was first treated with 587 μL of GdCl₃ 0.1 M (1.8 eq) and then with 587 μL of EDTA 0.1 M. After washing, the Gd-complexed GNP (129.4 mg, 3.52·10⁻⁴ mmol) was obtained as black powder. TEM: 3.0 ± 0.6 nm; IR (KBr): ν = 3442 (s), 2923 (w), 2854 (w), 1635 (m), 1458 (w), 1076 cm⁻¹ (s); UV-vis (water): λ_max = 525 nm (surface plasmon band); Anal. calcd for Au₁₂₈₉(C₈H₁₅O₆S)₂₆₂(C₂₅H₄₇N₄O₆S)₈₁Gd₄₇: Gd 2.01; found (ICP): Gd 2.0.

Figure 2S. TEM, size distribution, and relaxivity (r₁) of lacC5S-Au-SC11DO3A-Gd (8).
Figure 3S. TEM, size distribution, and relaxivity (r_1) of $\text{glcC}_2\text{S-Au-SC}_1\text{DO3A-Gd}$ (5).

$\text{glcC}_5\text{S-Au-SC}_3\text{DO3A-Gd}$ (1): $\text{glcC}_2\text{S-Au-SC}_3\text{DO3A}$ (17.7 mg, 6.1×10^{-5} mmol) in 1.7 mL of 0.1 M HEPES buffer was first treated with 69 μL of GdCl$_3$ 0.1 M (3.8 eq) and then with 69 μL of EDTA 0.1 M. After washing, the Gd-complexed GNP (9.8 mg, 3.2×10^{-5} mmol) was obtained as black powder. TEM: 3.0 ± 0.5 nm; IR (KBr): $\nu = 3444$ (s), 2925 (w), 2856 (w), 1632 (m), 1381 (w), 1074 cm$^{-1}$ (s); UV-vis (water): $\lambda_{\text{max}} = 520$ nm (surface plasmon band); Anal. calcd for Au$_{976}$(C$_{88}$H$_{153}$O$_{66}$S)$_{355}$(C$_{199}$H$_{355}$N$_{46}$O$_{66}$S)$_{30}$Gd$_{75}$: Gd 3.90; found (ICP): Gd 3.90.

Figure 4S. TEM, size distribution and relaxivity (r_1) of $\text{glcC}_2\text{S-Au-SC}_3\text{DO3A-Gd}$ (1).

Table 1S. Average molecular formula and molecular weight (MW) calculated on the basis of the gold core size (determined by TEM), elemental analysis and ICP-AES

<table>
<thead>
<tr>
<th>GNPs</th>
<th>Average Molecular Formula</th>
<th>Average MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{glcC}_2\text{S-Au-SC}_1\text{DO3A-Gd}$ (5)</td>
<td>Au${1289}$(C${88}$H${153}$O${66}$S)${355}$(C${199}$H${355}$N${46}$O${66}$S)${30}$Gd$_{75}$</td>
<td>367 KDa</td>
</tr>
<tr>
<td>$\text{glcC}_2\text{S-Au-SC}_3\text{DO3A-Gd}$ (2)</td>
<td>Au${1289}$(C${176}$H${331}$O${66}$S)${400}$(C${199}$H${355}$N${46}$O${66}$S)${30}$Gd$_{58}$</td>
<td>411 KDa</td>
</tr>
<tr>
<td>$\text{glcC}_5\text{S-Au-SC}_1\text{DO3A-Gd}$ (6)</td>
<td>Au${976}$(C${176}$H${331}$O${66}$S)${328}$(C${232}$H${467}$N${46}$O${66}$S)${56}$Gd$_{52}$</td>
<td>372 KDa</td>
</tr>
<tr>
<td>$\text{glcC}_2\text{S-Au-SC}_3\text{DO3A-Gd}$ (1)</td>
<td>Au${976}$(C${176}$H${331}$O${66}$S)${355}$(C${199}$H${355}$N${46}$O${66}$S)${30}$Gd$_{75}$</td>
<td>302 KDa</td>
</tr>
<tr>
<td>$\text{galC}_5\text{S-Au-SC}_1\text{DO3A-Gd}$ (7)</td>
<td>Au${201}$(C${176}$H${331}$O${66}$S)${115}$(C${199}$H${355}$N${46}$O${66}$S)${9}$Gd$_{3}$</td>
<td>77 KDa</td>
</tr>
<tr>
<td>$\text{lacC}_5\text{S-Au-SC}_3\text{DO3A-Gd}$ (4)</td>
<td>Au${976}$(C${176}$H${331}$O${66}$S)${328}$(C${232}$H${467}$N${46}$O${66}$S)${56}$Gd$_{52}$</td>
<td>351 KDa</td>
</tr>
<tr>
<td>$\text{galC}_5\text{S-Au-SC}_3\text{DO3A-Gd}$ (3)</td>
<td>Au${201}$(C${176}$H${331}$O${66}$S)${328}$(C${232}$H${467}$N${46}$O${66}$S)${56}$Gd$_{52}$</td>
<td>68 KDa</td>
</tr>
<tr>
<td>$\text{lacC}_5\text{S-Au-SC}_1\text{DO3A-Gd}$ (8)</td>
<td>Au${1289}$(C${176}$H${331}$O${66}$S)${400}$(C${232}$H${467}$N${46}$O${66}$S)${106}$Gd$_{77}$</td>
<td>523 KDa</td>
</tr>
</tbody>
</table>
Relaxation times measurements and phantom imaging: 1H NMR relaxation times T_1 and T_2 were measured at 1.41 Tesla in a Bruker Minispec NMR spectrometer at different concentrations of paramagnetic GNPs (10, 5, 2.5, 1, 0.5 mg mL$^{-1}$) in HEPES (10 mM, pH = 7.2) and NaCl 155 mM at 37 °C. T_1 and T_2 values were determined by the inversion-recovery method and by the Carr-Purcell-Meiboom-Gill sequence, respectively. Relaxivities $r_{1(2)}$ were obtained from the slopes of the curves $1/T_{1(2)}$ vs. the concentration of Gd(III) expressed in mM. T_1-weighted magnetic resonance images were performed at 7 Tesla (in NaCl 155 mM, at 37 °C) at different concentrations of Gd(III) (0.05, 0.1, 0.2, 0.4 mM) and contrast enhancement was controlled by running a standard spin-echo sequence with 800 ms or 400 ms repetition time and 8.5 ms echo time.

![Figure 5S. T_1-weighted MR images of the paramagnetic GNPs 1, 4, 6, and 8 (in NaCl 155 mM, at 37 °C) at 7 T (repetition time 800 ms, left; 400 ms, right; standard spin echo sequence, echo time 8.5 ms) for four Gd concentrations; D stands for Dotarem®.](image)

Figure 5S. T_1-weighted MR images of the paramagnetic GNPs 1, 4, 6, and 8 (in NaCl 155 mM, at 37 °C) at 7 T (repetition time 800 ms, left; 400 ms, right; standard spin echo sequence, echo time 8.5 ms) for four Gd concentrations; D stands for Dotarem®.

Cell lines and culture conditions: The C6 mouse glioma cell line was obtained from the American Type Culture Collection (Clontech Laboratories, Inc., USA) and maintained in Dulbecco’s modified Eagle’s medium (DMEM, Life Technologies, Inc), supplemented with 5% fetal bovine serum (FBS), streptomycin (0.1 mg mL$^{-1}$, Sigma, St. Louis, MO), penicillin (100 U mL$^{-1}$, Sigma), and gentamicin (25 μg mL$^{-1}$, Sigma). The GL261 glioma cell line was obtained from the Tumor Bank Repository (NCI, Frederick, USA) and maintained in DMEM, supplemented with 10% FBS, streptomycin (0.1 mg mL$^{-1}$), and penicillin (100 U mL$^{-1}$). All cell cultures were grown in a humidified 37 °C incubator with 5% CO$_2$ and 95% humidity (Thermo forma water jacketed CO$_2$ incubator, Thermo Electron Corporation, Marietta, USA).

Cytotoxicity tests: The viability of cells was determined by using the classical 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.68 Briefly, 104 cells/well were seeded into 96-well plates in 100 μL complete medium and incubated at 37 °C in 5% CO$_2$ atmosphere. After 24 h, the medium was replaced with a fresh one containing nanoparticles at different concentrations (0-20 μM). After a 24 h incubation period, 20 μL of MTT (5 mg mL$^{-1}$ in phosphate buffer pH 7.4) was added to each well. After 4 h of incubation at 37 °C and 5% CO$_2$ for exponentially growing cells and 15 min for steady-state confluent
cells, the medium was removed, formazan crystals were solubilized with 200 μL of DMSO, and the solution was vigorously mixed to dissolve the reacted dye. The absorbance of each well was read on a microplate reader (Dynatech MR7000 instruments) at 550 nm. The spectrophotometer was calibrated to zero absorbance, using culture medium without cells. The relative cell viability (%) related to control wells containing cell culture medium without nanoparticles was calculated by [A]test/[A]control x 100.

![Figure 6S](image-url)

Figure 6S. Evaluation of cytotoxicity of selected paramagnetic GNPs on C6 glioma cells.

Molecular modelling: Theoretical calculations were performed with Sybyl7.3, using Tripos force field and Gasteiger-Huckel charges for the glycoconjugates. Energy minimizations were performed in a process of 1000 runs reaching gradient convergence (0.05 Kcal/(mol.Å)) before exhausting the maximum number of iterations. A dielectric constant of 80 was employed. To simplify the calculations, trans-trans conformation was used for the aliphatic linkers and the glycosidic bonds were put in an exo-anomeric conformation. The length of the molecules are taken from the OH-4 to the SH group for the sugars and from a carboxyl to the SH groups for the DO3A derivatives.

In vivo imaging of brain tumors in mice: C57BL/6 line mice (20-25 g weight range) were used following the international ethical guidelines and as by Spanish Law enacted. Mice GL261 glioma cells were used for the stereotactic implantation of the tumor in the mice brain. MRI experiments (three mice for each compound tested) were run with a Bruker Pharmascan (Bruker Medical GmbH, Ettlingen, Germany) at 7 Tesla. The contrast agents were injected by coil vein at the same Gd(III) concentration (0.1 mmol Kg⁻¹ of mouse) in NaCl 155 mM, at 37 °C. T₂-weighted images (RARE sequence) were run before the contrast agents’ injection in
order to localize the tumor. The T_1-weighted images were registered with repetition time 300 ms and echo time 9.8 ms.

![Image of tumor localization with T_1-weighted images]

Figure 7S. TOP Left: T_1-weighted image of a GL261 generated tumor; Middle: T_1-weighted image after injection of Magnevist®; Right: T_1-weighted image after injection of $\text{glcC}_5\text{S-Au-SC}_{11}\text{DO3A-Gd (6)}$. BOTTOM: Zoom of the TOP images with arrows indicating the tumoral zones.

$^{17}\text{O NMR experiments}$: The number of water molecules directly coordinated to the Gd(III) ion (q) was determined by measurement of Gd(III)-induced shifts of the water ^{17}O NMR resonance similarly to the procedure reported by Djanashvili and Peters. 7S ^{17}O NMR spectra of $\text{glcC}_5\text{S-Au-SC}_{11}\text{DO3A-Gd (6)}$ were recorded at natural abundance in D$_2$O as the solvent on a Bruker Avance-500 spectrometer at 67.80 MHz with the deuterium frequency lock. All samples were placed in 3 mm tubes with a total volume of 180 μL. Experiments were performed using 0.06 s acquisition time, 0.2 s acquisition delay and 512 scan averages in a Bruker broadband inverse probe. ^{17}O chemical shift was obtained from peak position. $\text{GlcC}_5\text{S-Au-SC}_{11}\text{DO3A}$ was used as a blank.

$\text{glcC}_5\text{S-Au-SC}_{11}\text{DO3A-Gd (6)}$ was measured at 25 °C at 6.5 mM and 20.2 mM (Gd (III) concentrations) to give $q = 2.9 \pm 0.2$ and $q = 3.0 \pm 0.2$, respectively. At 60 °C, 6 (6.5 mM in Gd(III)) gave $q = 2.7 \pm 0.2$.

References

