Supporting Information

1H NMR spectrum of 1.
CSI-TOF mass spectra of 1 in CHCl₃/MeOH = 1:1 in the presence of K⁺ at [K⁺]/[1] = ca. 1.
CSI-TOF mass spectra of 1 in CHCl₃/MeOH = 1:1 in the presence of K⁺ at [K⁺]/[1] = ca. 100.
Determination of K_1 and K_2.

Define the step complex formation constants, K_1 and K_2, as

$$
1 + \text{Na}^+ \rightleftharpoons K_1 \text{Na} \\
\text{1Na} + \text{Na}^+ \rightleftharpoons K_2 \text{1Na}_2,
$$

$$
K_1 = \frac{[\text{1Na}]}{[\text{Na}]} \quad \text{and} \quad K_2 = \frac{[\text{1Na}_2]}{[\text{Na}_2][\text{Na}]}.
$$

Therefore,

$$
[\text{1Na}] = K_1[\text{Na}], \quad [\text{1Na}_2] = K_1 K_2 [\text{Na}]^2.
$$

The initial molar concentration of 1 (or total concentration of 1) can be defined as

$$
S = [1] + [\text{1Na}] + [\text{1Na}_2] = [1] + K_1[\text{Na}] + K_1 K_2 [\text{Na}]^2.
$$

The molar fraction of [1Na$_2$] can be written as

$$
f = \frac{[\text{1Na}_2]}{S} = \frac{K_1 K_2 [\text{Na}]^2}{1 + K_1[\text{Na}] + K_1 K_2 [\text{Na}]^2}.
$$

A curve fitting of the experimentally obtained relationship between f and [Na] (Fig. S1, square plots) by using the above formula (red curve) gave two undetermined coefficients, K_1 and K_2. Accordingly, log K_1 and log K_2 are estimated to be 5.39 and −1.00, respectively.

Figure S1 Plot of molar fraction of 1 against [Na]. Result of the curve fitting procedure is depicted by the red curve.