Direct Lateral Metallation using Alkali-Metal Mediated Zincation (AMMZn): SiC-H vs Si-O Bond Cleavage

Eva Hevia,* Alan R. Kennedy, Jan Klett and Matthew D. McCall

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK, G1 1XL. E-mail: <u>eva.hevia@strath.ac.uk</u>,

General: All reactions were performed under a protective argon atmosphere using standard Schlenk techniques. Hexane, THF and toluene were dried by heating to reflux over sodium benzophenone ketyl and distilled under nitrogen prior to use.. ${}^{t}Bu_{2}Zn^{1}$ was prepared according to literature methods. NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer, operating at 400.13 MHz for ¹H 150.32 MHz for ⁷Li and 100.62 MHz for ¹³C. Satisfactory elemental analysis of compounds **3** and **4** could not be obtained due to their highly air and moisture sensitive nature.

X-ray crystallography

Single-crystal diffraction data were recorded at 150 K on Nonius KappaCCD diffractometer using graphite-monochromated Mo-K α radiation (λ = 0.71073 Å). The structures were solved by direct methods and refined by full-matrix least-squares against F^2 using SHELXTL. Crystal data for **3**: C₂₆H₄₈LiNO₂SiZn, M_r = 507.05, triclinic, space group P $\overline{1}$, a = 11.2813(5), b= 11.3700(6), c= 13.0987(6) Å, α = 79.264(4), β = 79.106(4), γ = 61.575(5)°, V = 1441.91(12) Å³, Z = 2, λ = 0.71073 Å, μ = 0.913 mm⁻¹, T = 123 K; 20418 reflections, 7908 unique, R_{int} 0.0326; final refinement to convergence on F^2 gave R = 0.0314 (F, 6081 obs. data only) and R_w = 0.0725 (F^2 , all data), GOF = 0.967. Crystal data for **4**: C₃₁H₅₄LiNO₂Si₂Zn, M_r = 601.23, monoclinic, space group P2₁/c, a = 12.4930(3), b= 12.8910(3), c= 20.8841(5) Å, β = 92.494(2)°, V = 3360.14(14) Å³, Z = 4, λ = 0.71073 Å, μ = 0.828 mm⁻¹, T = 123 K; 55721 reflections, 9627 unique, R_{int} 0.04263; final refinement to convergence

¹ P. C. Andrikopoulos, D. R. Armstrong, H. R. L. Barley, W. Clegg, S. H. Dale, E. Hevia, G. W. Honeyman, A. R. Kennedy, R. E. Mulvey, J. Am. Chem. Soc. 2005, **127**, 6184.

on F^2 gave R = 0.0352 (*F*, 7223 obs. data only) and $R_w = 0.0742$ (F^2 , all data), GOF = 0.997. CCDC reference numbers ??????. See <u>http://www.rsc.org/suppdata/cc</u>????????? for crystallographic data in CIF or other electronic format.

Synthesis of [(THF)Li(TMP)Zn(C₆H₅OSi(CH₂)Me₂)^tBu]. To a solution of hexane (10ml) and TMPH (0.34ml, 2mmol) was added ⁿBuLi (1.6M in hexane, 1.25ml, 2mmol), and the resulting colourless solution was stirred for 1 hour at room temperature. A solution of ^tBu₂Zn (0.36g, 2mmol in 10ml of hexane) was added via canula, followed by THF (0.18ml, 2mmol) to give a colourless solution. Phenoxy(trimethylsialne) was then added (0.36ml, 2mmol) and after stirring for 1 hour the solution was concentrated in vacuo, then placed in the freezer (-30°C) for 4 days. Large colourless crystals were isolated (0.518g, yield 52%). ¹H NMR (400.13 MHz, 298K, C₆D₆) δ 7.06 (2H, t, H_{meta}), 6.86 (1H, t, H_{para}), 6.83 (2H, d, H_{ortho}), 3.34 (4H, m, OCH₂, THF), 1.83 (2H, m, H_γ, TMP), 1.68 (2H, m, H_β, TMP), 1.63 (9H, s, CH₃, ^tBu), 1.45 (2H, m, H_β, TMP), 1.38 (6H, s, α-CH₃, TMP), 1.19 (6H, s, α-CH₃, TMP), 1.19 (4H, m, CH₂, THF), 0.29 (6H, s, OSi(CH₃)₂), -0.59 (2H, s, OSiCH₂). $^{13}C{^{1}H}$ NMR (100.62 MHz, 298K, C₆D₆) δ 154.6 (C_{ipso}), 129.8 (C_{ortho}), 122.8 (C_{para}), 120.7 (C_{meta}), 68.3 (OCH₂, THF), 52.8 (C_α, TMP), 39.9 (C_β, TMP), 36.1 (α-CH₃, TMP), 35.0 (CH₃, ^{*t*}Bu), 33.3 (α-CH₃, TMP), 25.0 (CH₂, THF), 20.0 (C(CH₃)₃, ^{*t*}Bu), 19.8 (C_y, TMP), 2.6 (OSi(CH₃)₂), -3.9 (OSiCH₂). ⁷Li NMR (298K, d⁸-THF, reference LiCl in D₂O at 0.00 ppm): δ 1.07.

Synthesis of [(C₆H₅OSiMe₃)Li(TMP)Zn(C₆H₅OSi(CH₂)Me₂)^tBu]. To a solution of hexane (10ml) and TMPH (0.34ml, 2mmol) was added ⁿBuLi (1.6M in hexane, 1.25ml, 2mmol), and the resulting colourless solution was stirred for 1 hour at room temperature. A solution of ^tBu₂Zn (0.36g, 2mmol in 10ml of hexane) was added via canula, followed by Phenoxy(trimethylsialne) (0.36ml, 2mmol) and after stirring for 1 hour the solution was concentrated in vacuo, then placed in the freezer (-30°C) for 7 days. A batch of large colourless crystals were isolated (0.194g, yield 16%). ¹H NMR (400.13 MHz, 298K, C₆D₆) δ 7.10 (2H, t, *H*_{meta} (co-ord.)), 7.03 (2H, t, *H*_{meta}, (met.)), 6.89-6.84 (4H, m, *H*_{para} (met. & co-ord.) & H_{ortho} (co-ord.)), 6.76 (2H, d, *H*_{ortho}(met.)), 1.72 (2H, m, *H*_γ, TMP), 1.60 (2H, m, *H*_β, TMP), 1.53 (9H, s, *CH*₃, TMP), 0.22 (6H, s, *H*₆, TMP), 1.25 (6H, s, α -CH₃, TMP), 1.04 (6H, s, α -CH₃, TMP), 0.22 (6H, s,

OSi(CH₃)₂), 0.15 (9H, s, OSi(CH₃)₃), -0.68 (2H, s, OSiCH₂). ¹³C{¹H} NMR (100.62 MHz, 298K, C₆D₆) δ 155.7 (C_{ipso} (co-ord.)), 153.7 (C_{ipso} (met.)), 130.2 (C_{ortho} (met.)), 129.8 (C_{ortho} (co-ord.)), 123.5 (C_{para} (met.)), 121.8 (C_{para} (co-ord.)), 120.4 (C_{meta} (co-ord.)), 119.9 (C_{meta} (met.)), 52.7 (C_{α} , TMP), 40.6 (α -CH₃, TMP), 35.8 (α -CH₃, TMP), 34.2 (CH₃, [']Bu), 34.1 (C_{β} , TMP), 20.6 (C(CH₃)₃, [']Bu), 19.5 (C_{γ} , TMP), 2.2 (OSi(CH₃)₂), 0.2 (OSi(CH₃)₃), -4.2 (OSiCH₂). ⁷Li NMR (298K, d⁸-THF, reference LiCl in D₂O at 0.00 ppm): δ 1.89.

[(THF)Li(TMP)(C₆H₅OSiMe₂CH₂)Zn^tBu] (3)

Electronic Supplementary Information

$[(C_6H_5OSiMe_3)Li(TMP)(C_6H_5OSiMe_2CH_2)Zn^tBu] (4)$

[C₆H₅OLi(THF)]

Electronic Supplementary Information

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

Electronic Supplementary Information

C₆H₅OSiMe₃

Electronic Supplementary Information

