Supporting Information

Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia

Hanhui Xu and Christian Wolf*

Department of Chemistry, Georgetown University, Washington DC, 20057
cw27@georgetown.edu

Experimental Procedures

General Procedures. All chemicals used were of reagent grade. Flash chromatography was performed on Kieselgel 60, particle size 0.032-0.063 mm. NMR spectra were obtained at 400 MHz (^1H NMR) and 100 MHz (^13C NMR) using CDCl3 as solvent unless noted otherwise. Chemical shifts are reported in ppm relative to TMS.

General procedure for the Cu-catalyzed amination of aryl halides
A 10 mL reaction vessel was charged with Cu2O (14.3 mg, 0.10 mmol), aryl halide (2.0 mmol), 1.3 mL of N-methyl pyrrolidinone (NMP), 1.3 mL of ammonium hydroxide solution (29% NH3, 20.0 mmol) and a magnetic stir bar. The vessel was sealed with a Teflon screw cap, immersed in a preheated oil bath and the reaction mixture was stirred at 80 °C. Upon completion, the reaction mixture was cooled to 25 °C, quenched with water, extracted with diethyl ether and dried over anhydrous MgSO4. The solvents were removed under vacuum and the residue was purified by flash chromatography on silica gel as described below.

General microwave-assisted procedure for the Cu-catalyzed amination of aryl chlorides
A mixture of Cu2O (14.3 mg, 0.10 mmol), aryl chloride (2.0 mmol) and 1.3 mL of N-methyl pyrrolidinone (NMP) was placed with 1.3 mL of ammonium hydroxide solution (29% NH3, 20.0 mmol) into a 10 mL glass tube. The reaction mixture was placed in a microwave oven and heated to 110 °C (150 W) while the temperature was monitored using a calibrated infrared temperature control. Upon completion, the mixture was allowed to cool to room temperature, quenched with water, extracted with diethyl ether and dried over anhydrous MgSO4. The solvents were removed under vacuum and the residue was purified by flash chromatography on silica gel as described below.

Product identification (yields are corresponding to the reactions of the aryl halides given in Table 1)
Aniline. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 186.0 mg of a colorless oil (2.00 mmol, 100%). ^1H NMR: δ 3.54 (s, br, 2H), 6.59-6.61 (m, 2H), 6.70-6.74 (m, 1H), 7.09-7.13 (m, 2H). ^13C NMR: δ 115.2, 118.6, 129.4, 146.6.
o-Toluidine. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 205.7 mg of a colorless oil (1.92 mmol, 96%). 1H NMR: δ 2.09 (s, 3H), 3.47 (s, br, 2H), 6.58 (d, $J = 7.6$ Hz, 1H), 6.67 (t, $J = 7.6$ Hz, 1H), 6.98-7.01 (m, 2H). 13C NMR: δ 17.4, 115.0, 118.7, 122.4, 127.1, 130.6, 144.8.

p-Toluidine. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 209.7 mg of slight yellow crystals (1.96 mmol, 98%). 1H NMR: δ 2.19 (s, 3H), 3.40 (s, br, 2H), 6.69 (d, $J = 8.4$ Hz, 2H), 6.91 (d, $J = 8.4$ Hz, 2H). 13C NMR: δ 20.6, 115.4, 127.7, 129.9, 144.2.

3,5-Dimethylaniline. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 242.4 mg of a colorless oil (2.00 mmol, 100%). 1H NMR: δ 2.20 (s, 6H), 3.47 (s, br, 2H), 6.27 (s, 2H), 6.91 (s, 1H). 13C NMR: δ 21.8, 113.7, 121.0, 139.4, 146.8.

2-Isopropylaniline. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 221.7 mg of a colorless oil (1.64 mmol, 82%). 1H NMR: δ 1.23 (d, $J = 6.8$ Hz, 6H), 2.81-2.88 (m, 1H), 3.56 (s, br, 2H), 6.61 (dd, $J = 8.0$, 1.2 Hz, 1H), 6.74-6.78 (m, 1H), 6.96-6.70 (m, 1H), 7.11 (dd, $J = 7.6$, 1.0 Hz, 1H). 13C NMR: δ 22.4, 27.7, 115.9, 119.1, 125.5, 126.6, 132.7, 143.5.

2-Aminobiphenyl. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 253.8 mg of slight brown crystals (1.50 mmol, 75%). 1H NMR: δ 3.71 (s, br, 2H), 6.72-6.83 (m, 2H), 7.11-7.19 (m, 2H), 7.30-7.44 (m, 5H). 13C NMR: δ 115.6, 118.6, 127.2, 127.6, 128.5, 129.1, 130.5, 139.6, 143.5.

1-Aminonaphthalene. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 257.8 mg of purple crystals (1.80 mmol, 90%). 1H NMR: δ 4.01 (s, br, 2H), 6.68 (dd, $J = 7.2$, 1.2 Hz, 1H), 7.22-7.29 (m, 2H), 7.36-7.43 (m, 2H), 7.71-7.77 (m, 2H). 13C NMR: δ 109.7, 119.0, 120.9, 123.7, 124.9, 125.9, 126.4, 134.5, 142.2.

1,3-Phenylenediamine. Purification by flash chromatography (hexanes:ethyl acetate=9:1) gave 203.3 mg of purple crystals (1.88 mmol, 94%). 1H NMR: δ 3.55 (s, br, 4H), 5.94 (d, $J = 2.0$ Hz, 1H), 6.08 (dd, $J = 8.0$, 2.0 Hz, 2H), 6.91 (t, $J = 8.0$ Hz, 1H). 13C NMR: δ 102.5, 106.4, 130.6, 148.1.

3-Chloroaniline. Purification by flash chromatography (hexanes:ethyl acetate=10:1) gave 237.3 mg of slight yellow crystals (1.86 mmol, 93%). 1H NMR: δ 3.66 (s, br, 2H), 6.46-6.48 (m, 1H), 6.60 (t, $J = 2.0$ Hz, 1H), 6.69 (dd, $J = 8.0$, 2.0 Hz, 1H), 7.01 (t, $J = 8.0$ Hz, 1H). 13C NMR: δ 113.3, 114.9, 118.4, 130.4, 134.8, 147.8.

p-Anisidine. Purification by flash chromatography (hexanes:ethyl acetate=9:1) gave 231.5 mg of white crystals (1.88 mmol, 94%). 1H NMR: δ 3.41 (s, br, 2H), 3.71 (s, 3H), 6.60 (dd, $J = 6.8$, 2.0 Hz, 2H), 6.72 (dd, $J = 6.8$, 2.0 Hz, 2H). 13C NMR: δ 55.7, 114.8, 116.4, 140.1, 152.7.

4-Aminobenzonitrile. Purification by flash chromatography (hexanes:ethyl acetate=9:1) gave 237.6 mg of slight yellow crystals (1.72 mmol, 86%). 1H NMR: δ 4.40 (s, br, 2H), 6.63 (d, $J = 8.8$ Hz, 2H), 8.07 (d, $J = 8.8$ Hz, 2H). 13C NMR: δ 113.4, 126.3, 139.0, 152.5.
3-Aminoacetophenone. Purification by flash chromatography (hexanes:ethyl acetate=9:1) gave 248.7 mg of slight yellow crystals (1.84 mmol, 92%). 1H NMR: δ 2.52 (s, 3H), 4.00 (s, br, 2H), 6.84 (dd, $J = 8.0, 1.6$ Hz, 1H), 7.17-7.29 (m, 3H). 13C NMR: δ 26.7, 113.9, 118.5, 119.7, 129.4, 138.1, 147.1, 198.7.

4-Aminobenzaldehyde. Purification by flash chromatography (hexanes:ethyl acetate=7:3) gave 191.4 mg of slight yellow crystals (1.58 mmol, 79%). 1H NMR (in (CD$_3$)$_2$SO): δ 5.78 (s, br, 2H), 6.66 (d, $J = 8.4$ Hz, 2H), 7.57 (d, $J = 8.4$ Hz, 2H), 9.61 (s, 1H). 13C NMR: δ 113.4, 125.5, 132.2, 154.7, 189.6.

4-Aminopyridine. Purification by flash chromatography (hexanes:ethyl acetate=7:3) gave 139.3 mg of white crystals (1.48 mmol, 74%). 1H NMR (CD$_3$OD): δ 5.06 (s, br, 2H), 6.55 (d, $J = 6.4$ Hz, 2H), 7.95 (d, $J = 6.4$ Hz, 2H). 13C NMR: δ 110.3, 149.7, 156.8.

4-Amino-2-methylquinoline. Purification by flash chromatography (dichloromethane:ethanol:triethylamine=100:10:3) gave 256.3 mg of white crystals (1.62 mmol, 81%). 1H NMR: δ 2.58 (s, 3H), 4.74 (s, 2H), 6.49 (s, 1H), 7.38 (m, 1H), 7.60 (m, 1H), 7.71 (d, $J = 8.4$ Hz, 1H), 7.93 (d, $J = 8.4$ Hz, 1H). 13C NMR: δ 25.2, 103.9, 117.4, 120.0, 124.1, 129.0, 129.4, 148.6, 149.6, 159.3.

Ethyl 4-aminobenzoate. Purification by flash chromatography (hexanes:ethyl acetate=8:2) gave 274.2 mg of slight yellow crystals (1.66 mmol, 83%). 1H NMR: δ 1.35 (t, $J = 7.2$ Hz, 3H), 4.16 (s, br, 2H), 4.31 (q, $J = 7.2$ Hz, 2H), 6.62 (dd, $J = 8.8, 2.0$ Hz, 2H), 7.84 (dd, $J = 8.8, 2.0$ Hz, 2H). 13C NMR: δ 14.4, 60.3, 113.7, 119.7, 131.5, 151.0, 166.8.

Methyl 2-aminobenzoate. Purification by flash chromatography (hexanes:ethyl acetate=8:2) gave 278.1 mg of slight yellow crystals (1.84 mmol, 92%). 1H NMR: δ 3.84 (s, 3H), 5.71 (s, br, 2H), 6.62 (t, $J = 7.6$ Hz, 2H), 7.24 (m, 1H), 7.84 (dd, $J = 8.4, 1.6$ Hz, 1H). 13C NMR: δ 51.5, 110.7, 116.2, 116.7, 131.2, 134.1, 150.5, 168.6.

2-Aminobenzoic acid. Purification by flash chromatography (hexanes:ethyl acetate=6:4) gave 257.8 mg of white crystals (1.88 mmol, 94%). 1H NMR: δ 5.19 (s, br, 2H), 6.55-6.61 (m, 1H), 6.73 (dd, $J = 8.8, 2.0$ Hz, 1H), 7.20-7.26 (m, 1H), 7.84 (dd, $J = 8.8, 2.0$ Hz, 1H). 13C NMR: δ 111.9, 116.9, 118.0, 132.9, 135.3, 152.9, 171.9.

References
1H NMR and 13C NMR spectra of aniline in CDCl$_3$:

![Aniline structural formula]

![Aniline 1H NMR spectrum]

![Aniline 13C NMR spectrum]
1H NMR and 13C NMR spectra of o-toluidine in CDCl$_3$:

[Spectrum diagram]

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2009
1H NMR and 13C NMR spectra of p-toluidine in CDCl$_3$:

\[\text{ppm (f1)} \]

\[\text{ppm (f1)} \]
1H NMR and 13C NMR spectra of 3,5-dimethylaniline in CDCl$_3$:

![Chemical structure and NMR spectra](image-url)
1H NMR and 13C NMR spectra of 2-isopropylaniline in CDCl$_3$:

![Diagram of 2-isopropylaniline molecule and NMR spectra]
1H NMR and 13C NMR spectra of 2-aminobiphenyl in CDCl$_3$:
1H NMR and 13C NMR spectra of 1-aminonaphthalene in CDCl$_3$:
1H NMR and 13C NMR spectra of 1,3-phenylenediamine in CDCl$_3$:
1H NMR and 13C NMR spectra of 3-chloroaniline in CDCl$_3$:

![Chemical Structure](image)

![NMR Spectrum](image)
1H NMR and 13C NMR spectra of 4-anisidine in CDCl$_3$:

![NMR spectra image]

![NMR spectra image]
1H NMR and 13C NMR spectra of 4-aminobenzonitrile in CDCl$_3$:
1H NMR and 13C NMR spectra of 4-nitroaniline in CDCl$_3$:
1H NMR and 13C NMR spectra of 3-aminoacetophenone in CDCl$_3$:
1H NMR and 13C NMR spectra of 4-aminobenzaldehyde in d_6-DMSO:
1H NMR and 13C NMR spectra of 4-aminopyridine in CD$_3$OD:
1H NMR and 13C NMR spectra of 4-amino-2-methylquinoline, in CDCl$_3$:

![NMR spectra](image)
1H NMR and 13C NMR spectra of ethyl 4-aminobenzoate in CDCl$_3$:
1H NMR and 13C NMR spectra of methyl 2-aminobenzoate in CDCl$_3$:

\[
\text{NH}_2\text{COO}Me
\]

\[
\text{NH}_2\text{COO}Me
\]
1H NMR and 13C NMR spectra of 2-aminobenzoic acid in CD$_3$OD: