Supporting Information Available

Alloyed Semiconductor Nanocrystals with Broad Tunable Band Gaps

Daocheng Pan,¹ Ding Weng¹, Xiaolei Wang¹, Qiangfeng Xiao¹, Wei Chen,² Chuanlai Xu,^{2*} Zhengzhong Yang^{3*}, Yunfeng Lu^{1*}

¹ Department of Chemical Engineering, University of California, Los Angeles, CA 90095; ²School of Food Science & Technology, Jiangnan University, Wuxi Jiangsu, 214122, P. R. China

³Institute of Chemistry, Chinese Academic of Science, Beijing, China, 10080

Experimental section

I. Chemicals

CuCl₂·2H₂O, InCl₃·4H₂O, oleic acid (OA, 90%), oleylamine (OM, 70%), 1-dodecanethiol (DDT, 98%), 1-octadecene (ODE, 90%), sodium diethyl dithiocarbamate (Na-dedc) (NaS₂CNEt₂) (98%), Zn(dedc)₂ (98%), and ethanol (99.9%) were purchased from Aldrich.

II. Synthesis of (CuInS₂)_x(ZnS)_{1-x} nanocrystals by a hot-injection approach

Cu(dedc)₂ and In(dedc)₃ were synthesized through the reactions of metal chloride with Na-dedc in water at room temperature. Complete details were described elsewhere.¹ A typical procedure for the synthesis of cubic $(CuInS_2)_{0.5}(ZnS)_{0.5}$ nanocrystals is as follows. 18.1 mg (0.05 mmol) of Zn(dedc)₂, 18.0 mg (0.05 mmol) of Cu(dedc)₂, 28.0 mg (0.05 mmol) of In(dedc)₃, 0.5 g of oleic acid, and 4.5 g of ODE were putted into a 50 mL three-neck flask. The mixture was heated to 200°C under nitrogen flow. Then 0.5 mL of oleylamine was injected into the flask, and the temperature was kept at 200°C for 2 min. Copious amount of ethanol was added to completely precipitation of nanocrystals. Hexagonal (CuInS₂)_x(ZnS)_{1-x} nanocrystals were synthesized by the same procedure except that 0.5g of dodecanethiol was used in place of 0.5 g of oleic acid.

III. Characterization

UV-vis absorption spectra were recorded on a Shimadzu UV-1700 spectrometer with a resolution of 1.0 nm. The powder XRD patterns were recorded using a Panalytical X'Pert Pro X-ray diffractometer. TEM image was taken on a CM-120 electron microscope with an accelerating voltage of 120 kV. Energy Disperse Spectroscopy (EDS) spectrum was obtained by using a scanning electron microscope (JEOL JSM-6700F).

Figure S1 Energy Dispersive X-ray (EDX) spectra of cubic $(CuInS_2)_x(ZnS)_{1-x}$ nanocrystals.

Phase	Zn%	Cu%	In%	S%	ZnS/CuInS ₂
Cubic	37.09	5.05	5.44	51.61	8:1
Cubic	32.29	8.25	8.89	50.57	4:1
Cubic	22.97	10.93	12.81	53.29	2:1
Cubic	15.88	14.18	16.70	53.23	1:1
Cubic	10.99	20.21	19.17	49.63	1:2
Cubic		24.93	23.05	50.64	0:1

Table S1 Composition determined by EDX spectra of cubic $(CuInS_2)_x(ZnS)_{1-x}$ nanocrystals and precursor ratios.

Figure S2 Energy Dispersive X-ray (EDX) spectra of hexagonal $(CuInS_2)_x(ZnS)_{1-x}$ nanocrystals.

Phase	Zn%	Cu%	In%	S%	ZnS/CuInS ₂
Hexagonal	34.12	5.33	5.97	54.58	8:1
Hexagonal	28.64	8.02	9.97	53.57	4:1
Hexagonal	21.72	11.85	13.89	52.54	2:1
Hexagonal	14.14	13.39	17.84	54.63	1:1
Hexagonal	10.09	17.68	20.35	51.87	1:2
Hexagonal		22.52	24.02	51.93	0:1

Table S2 Composition determined by EDX spectra of hexagonal $(CuInS_2)_x(ZnS)_{1-x}$ nanocrystals and precursor ratios.

Figure S3 TEM images of hexagonal (ZnS)₀(CuInS₂)_{1.0} nanocrystals.

Figure S4 TEM images of hexagonal $(ZnS)_{0.33}(CuInS_2)_{0.66}$ nanocrystals.

Figure S5 TEM images of hexagonal (ZnS)_{0.66}(CuInS₂)_{0.33} nanocrystals.

(1) Pan, D.; An, L.; Sun, Z.; Hou, W.; Yang, Y.; Yang, Z.; Lu, Y. J. Am. Chem. Soc. **2008**, 130, 5620.