# Azide ion recognition in water/CHCl<sub>3</sub> using a chelating phosphonium borane as a receptor.

Youngmin Kim,a Todd W. Hudnall,a Ghenwa Bouhadir,b Didier Bourissou,\*b and François P. Gabbaï \*

 <sup>a</sup> Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA. Fax: 1 979 845 4719; Tel: 1 979 862 2070; E-mail: <u>francois@tamu.edu</u>
<sup>b</sup> University of Toulouse, UPS, LHFA, 118 route de Narbonne, F-31062 Toulouse, France. CNRS, LHFA UMR 5069, F-31062 Toulouse, France.

**Supplementary Information** 

**General Considerations.** [1]I was synthesized as described in *J. Am. Chem. Soc.*, 2008, 130, 10890. Sodium fluoride was purchased from MCB manufacturing chemists Inc., sodium azide and sodium hydroxide from Fisher scientific company. Solvents were dried by passing through an alumina column (Hexanes, dichloromethane), refluxing under N<sub>2</sub> over Na/K (diethyl ether). Methanol and chloroform (ACS reagent grade) were used as provided. UV-vis and emission spectra were recorded on an Ocean Optics USB4000 spectrometer with a Ocean Optics ISS light source. pH Measurements were carried out with a Radiometer PHM290 pH meter equipped with a VWR SympHony electrode. IR spectra were obtained using a ATI Mattson Genesis Series FT infrared spectrophotometer. Elemental analyses were performed by Atlantic Microlab (Norcross, GA). NMR spectra were recorded on Varian Unity Inova 400 FT NMR (399.59 MHz for <sup>1</sup>H, 128.19 MHz for <sup>11</sup>B, 100.45 MHz for <sup>13</sup>C, 161.75 MHz for <sup>31</sup>P) and Varian Inova 500 FT NMR (499.88 MHz for <sup>1</sup>H) spectrometers at ambient temperature. Chemical shifts are given in ppm, and are referenced against external BF<sub>3</sub>·Et<sub>2</sub>O (<sup>11</sup>B) and H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P).

**Crystallography**. The crystallographic measurements were performed using a Bruker APEX-II CCD area detector diffractometer (Mo-K<sub> $\alpha$ </sub> radiation,  $\lambda$ = 0.71073 Å). A specimen of suitable size and quality was selected and mounted onto a nylon loop. The structures were solved by direct methods, which successfully located most of the non-hydrogen atoms. Subsequent refinement on F<sup>2</sup> using the SHELXTL/PC package (version 5.1) allowed location of the remaining non-hydrogen atoms.

# Formation of 1-OH under biphasic conditions

This experiment was carried out by sonicating a biphasic mixture consisting of [1]I in CDCl<sub>3</sub> (0.0087 M, 0.6 mL) and NaOH in water (0.1 mL, 0.063 M). Conversion into 1-OH was complete after 1h 30 min as shown by the detection of a single <sup>31</sup>P-NMR resonance at  $\delta$  20.8 ppm.

# **Reversibility of the reaction of [1]I with NaOH**

In order to test the stability of [1]I and the reversibility of its reaction with hydroxide ions, a solution into [1]I in H<sub>2</sub>O:MeOH 9/1 vol. (3 mL,  $6.7 \times 10^{-5}$  M; 9 mM phosphoric acid buffer, pH 2.29) was placed in a UV cell and analyzed by UV-vis spectroscopy (Figure S1). This pH of the solution was adjusted to 4.86 (with NaOH) which resulted in quenching of the broad band centered at 330 nm (due to hydroxide binding to the boron center) as well as a shift of the baseline caused by precipitation of 1-OH (Figure S2). The pH of the solution was then adjusted to 2.39 (with HCl) which resulted in revival of the band at 330 nm (Figure S3) indicating conversation of 1-OH back into [1]<sup>+</sup>.



**Figure S1**. UV-Vis spectrum of a solution of [1]I in H<sub>2</sub>O/MeOH 9/1 vol. (3 mL,  $6.7 \times 10^{-5}$  M; 9 mM phosphate buffer) at pH 2.29.



**Figure S2**. UV-Vis spectrum of a solution of [1]I in H<sub>2</sub>O/MeOH 9/1 vol. (3 mL,  $6.7 \times 10^{-5}$  M; 9 mM phosphate buffer) at pH 4.86.



**Figure S3**. UV-Vis spectrum of a solution of [1]I in H<sub>2</sub>O/MeOH 9/1 vol. (3 mL,  $6.7 \times 10^{-5}$  M; 9 mM phosphate buffer) at pH 2.39.

# **Computational details:**

DFT calculations (full geometry optimization) were carried out with the Gaussian 03 program using the gradient-corrected Becke exchange functional (B3LYP) and the Lee-Yang-Parr correlation functional. Geometry optimization of  $1-N_3$  was carried out with the following mixed basis set: 6-31+g(d') for the boron, nitrogen, 6-31+g(d) for the phosphorus atom, 6-31g basis set was used for all carbon and hydrogen atoms. Frequency calculations, which were carried out on the optimized structures of the compounds, confirmed the absence of any imaginary frequencies. The Natural Bond Orbital (NBO) analysis was carried out using the stand along PC version of GENNBO 5.0 program.

# Computed structure of 1-N<sub>3</sub>



# **Cartesian coordinate**

| P1 | 2.087396 | -0.09284 | -0.13657 | H10 | -3.11489 | 1.642483 | -3.23522 |
|----|----------|----------|----------|-----|----------|----------|----------|
| N2 | -0.51783 | -0.59198 | -1.02889 | H11 | -1.67773 | 0.629553 | -3.26434 |
| N3 | -0.87403 | -1.32506 | -1.91827 | H12 | -2.93651 | 0.334375 | -2.06275 |
| N4 | -1.1146  | -2.03057 | -2.79724 | C13 | 2.048502 | -2.87538 | -0.42972 |
| C5 | 6.145506 | -0.22296 | 0.726817 | H14 | 1.711607 | -2.90046 | 0.600752 |
| H6 | 6.964828 | -0.92451 | 0.608859 | C15 | -0.18696 | -0.6976  | 3.843193 |
| C7 | 4.024884 | 1.577374 | 1.027721 | H16 | -0.69428 | -0.86194 | 4.789391 |
| H8 | 3.210023 | 2.281549 | 1.163157 | C17 | 2.264843 | -1.6412  | -1.06994 |
| C9 | -2.39562 | 1.118725 | -2.59471 | C18 | 6.37134  | 1.030965 | 1.302062 |
|    |          |          |          |     |          |          |          |

| H19 | 7.36732  | 1.307155 | 1.632433 | C51 | 5.307832 | 1.930671 | 1.452379 |
|-----|----------|----------|----------|-----|----------|----------|----------|
| C20 | -0.34327 | -0.15248 | 1.434172 | H52 | 5.476465 | 2.904279 | 1.900557 |
| C21 | 1.078807 | -0.27522 | 1.37728  | C53 | -0.86322 | 2.865417 | 0.480185 |
| C22 | -1.32641 | 1.772949 | -0.31931 | C54 | 2.238678 | -4.07079 | -1.12959 |
| C23 | 1.763805 | 1.307915 | -1.26273 | H55 | 2.058553 | -5.01737 | -0.63146 |
| H24 | 2.662468 | 1.477446 | -1.86358 | C56 | -0.56582 | 2.77267  | 1.971328 |
| H25 | 0.899182 | 1.106002 | -1.88974 | H57 | -0.48939 | 3.780019 | 2.395294 |
| H26 | 1.54857  | 2.206408 | -0.67907 | H58 | -1.35611 | 2.248186 | 2.515127 |
| C27 | -4.18784 | -2.61021 | 0.592134 | H59 | 0.368922 | 2.249238 | 2.199241 |
| H28 | -4.22115 | -3.69736 | 0.633901 | C60 | -4.051   | 0.174071 | 0.56785  |
| C29 | -5.27971 | -0.49847 | 0.696283 | C61 | -4.13988 | 1.689819 | 0.669347 |
| H30 | -6.18434 | 0.092815 | 0.822266 | H62 | -5.13028 | 1.976153 | 1.040593 |
| C31 | -1.73006 | 2.10942  | -1.65203 | H63 | -3.39728 | 2.107157 | 1.353718 |
| C32 | 3.7874   | 0.314906 | 0.443814 | H64 | -3.99219 | 2.187585 | -0.29367 |
| C33 | 2.664157 | -1.62131 | -2.41963 | C65 | -0.92495 | -0.37561 | 2.705209 |
| H34 | 2.8211   | -0.68122 | -2.93722 | H66 | -2.00457 | -0.30828 | 2.78061  |
| C35 | 1.831003 | -0.60383 | 2.535822 | C67 | 2.642401 | -4.04635 | -2.46975 |
| H36 | 2.909311 | -0.69461 | 2.484885 | H68 | 2.780157 | -4.97525 | -3.01283 |
| C37 | -1.57247 | 3.409187 | -2.15993 | C69 | -1.03199 | 4.44884  | -1.39708 |
| H38 | -1.90072 | 3.61363  | -3.17769 | C70 | -1.75069 | -2.93666 | 0.436483 |
| C39 | -2.82762 | -0.55206 | 0.392012 | H71 | -1.97483 | -3.81463 | 1.054033 |
| C40 | 2.850573 | -2.8215  | -3.11337 | H72 | -1.54316 | -3.3052  | -0.57513 |
| H41 | 3.146824 | -2.79665 | -4.15654 | H73 | -0.83726 | -2.48618 | 0.821766 |
| C42 | 1.204399 | -0.81734 | 3.761332 | C74 | -2.93791 | -1.98068 | 0.461573 |
| H43 | 1.795228 | -1.07379 | 4.634599 | C75 | -0.71172 | 4.154302 | -0.06982 |
| C44 | 4.860995 | -0.58152 | 0.298452 | H76 | -0.35527 | 4.956234 | 0.574114 |
| H45 | 4.699341 | -1.55626 | -0.1469  | C77 | -0.83519 | 5.833683 | -1.97384 |
| C46 | -6.72005 | -2.58813 | 0.772745 | H78 | -1.69889 | 6.144995 | -2.57361 |
| H47 | -7.44614 | -1.99066 | 1.33583  | H79 | -0.68958 | 6.577913 | -1.18333 |
| H48 | -7.14746 | -2.76275 | -0.22467 | H80 | 0.04393  | 5.877151 | -2.63203 |
| H49 | -6.63214 | -3.56492 | 1.262163 | N81 | -1.34777 | 0.167291 | 0.155773 |
| C50 | -5.38053 | -1.89141 | 0.682748 |     |          |          |          |