Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2009

Supporting Information For:

Cu(II)-Mediated Oxidative Intermolecular *ortho* C-H Functionalisation Using Tetrahydropyrimidine as the Directing Group

Tsukasa Mizuhara, Shinsuke Inuki, Shinya Oishi, Nobutaka, Fujii* and Hiroaki, Ohno*

Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto 606-8501 (Japan) E-mail: hohno@pharm.kyoto-u.ac.jp; nfujii@pharm.kyoto-u.ac.jp

Table of Contents

Experimental Section ------ S2

NMR Spectral Data ----- S8

General Procedure for Preparation of the Substrates.¹ Synthesis of 2-Phenyl-1,4,5,6-tetrahydropyrimidine (1a): To a solution of benzaldehyde (5.00 g, 47.1 mmol) in *t*-BuOH (470 mL) was added propylenediamine (3.84 g, 51.8 mmol). The mixture was stirred at 70 °C for 30 min, and then K₂CO₃ (19.53 g, 141.3 mmol) and I₂ (14.95 g, 58.8 mmol) were added. After stirring at this temperature for 3 h, the mixture was quenched with sat. Na₂SO₃ until the iodine color almost disappeared. The organic layer was separated and concentrated in vacuo. The resulting solid was recrystallised from MeOH–Et₂O to give 2-phenyl-1,4,5,6-tetrahydropyrimidine hydroiodide. The resulting crystal was dissolved with H₂O, and then pH was adjusted to 12–14 with 2N NaOH. The whole was extracted with CHCl₃. The extract was dried over MgSO₄. The filtrate was concentrated in vacuo, and the resulting solid was recrystallised from CHCl₃–*n*-hexane to give the compound **1a** as colorless crystals (6.62 g, 82%): mp 88–89 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1618 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.83-1.85 (m, 2H, CH₂), 3.49 (t, *J* = 5.9 Hz, 4H, 2 × CH₂), 5.02 (br s, 1H, NH), 7.34-7.38 (m, 3H, Ar), 7.63-7.66 (m, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.7, 42.3 (2C), 126.0 (2C), 128.2 (2C), 129.6, 137.3, 154.5. *Anal.* calcd for C₁₀H₁₂N₂: C, 74.97; H, 7.55; N, 17.48. Found; C, 74.79; H, 7.53; N, 17.43.

¹ M. Ishihara and H. Togo, *Tetrahedron*, 2007, **63**, 1474.

2-(4-Methoxyphenyl)-1,4,5,6-tetrahydropyrimidine (**1b**): *p*-Methoxybenzaldehyde (1.36 g, 10 mmol) was subjected to general procedure as described above. Colorless crystals (1.40 g, 74%): mp 132–134 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1611 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.87 (m, 2H, CH₂), 3.49 (t, *J* = 5.7 Hz, 4H, 2 × CH₂), 3.81 (s, 3H, OCH₃), 4.87 (br s, 1H, NH), 6.86 (d, *J* = 9.4 Hz, 2H, Ar), 7.60 (d, *J* = 9.4 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.9, 42.4 (2C), 55.2, 113.5 (2C), 127.2 (2C), 130.0, 153.9, 160.6. *Anal.* calcd for C₁₁H₁₄N₂O: C, 69.45; H, 7.42; N, 14.73. Found: C, 69.18; H, 7.46; N, 14.58.

2-(4-Tolyl)-1,4,5,6-tetrahydropyrimidine (**1c**): *p*-Tolualdehyde (1.20 g, 10 mmol) was subjected to general procedure as described above. Colorless crystals (1.03 g, 59%): mp 120–121 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1615 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.82-1.85 (m, 2H, CH₂), 2.35 (s, 3H, CH₃), 3.49 (t, *J* = 5.7 Hz, 4H, 2 × CH₂), 4.90 (br s, 1H, NH), 7.15 (d, *J* = 8.3 Hz, 2H, Ar), 7.54 (d, *J* = 8.3 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 21.2, 42.3 (2C), 125.8 (2C), 128.9 (2C), 134.5, 139.5, 154.3. *Anal.* calcd for C₁₁H₁₄N₂: C, 75.82; H, 8.10; N, 16.08. Found: C, 75.76; H, 8.01; N,

2-(4-Bromophenyl)-1,4,5,6-tetrahydropyrimidine (**1d**): *p*-Bromobenzaldehyde (1.85 g, 10 mmol) was subjected to general procedure as described above. Colorless crystals (1.82 g, 76%): mp 174–175 °C (from CHCl₃–*n*-hexane); IR cm⁻¹: 1619 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.81-1.88 (m, 2H, CH₂), 3.49 (t, *J* = 5.7 Hz, 4H, 2 × CH₂), 4.81 (br s, 1H, NH), 7.48 (d, *J* = 8.8 Hz, 2H, Ar), 7.53 (d, *J* = 8.8 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.7, 42.4 (2C), 123.8, 127.6 (2C), 131.4 (2C), 136.3, 153.5. *Anal.* calcd for C₁₀H₁₁BrN₂: C, 50.23; H, 4.64; N, 11.72. Found: C, 50.20; H, 4.51; N, 11.66.

Methyl 4-(1,4,5,6-Tetrahydropyrimidin-2-yl)benzoate (1e): Methyl 4-formylbenzoate (1.00 g, 6.09 mmol) was subjected to general procedure as described above. Colorless crystals (1.63 g, 80%): mp 152–153 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1721 (C=O), 1620 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.83-1.89 (m, 2H, CH₂), 3.52 (t, *J* = 5.7 Hz, 4H, 2 × CH₂), 3.92 (s, 3H, OCH₃), 5.04 (br s, 1H, NH), 7.72 (d, *J* = 8.5 Hz, 2H, Ar), 8.02 (d, *J* = 8.5 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 42.3 (2C), 52.1, 126.0 (2C), 129.5 (2C), 130.8, 141.5, 153.6, 166.6. *Anal.* calcd for C₁₂H₁₄N₂O₂: C, 66.04; H, 6.47; N, 12.84. Found: C, 65.76; H, 6.28; N, 12.69.

2-[4-(Trifluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine (**1f**): *p*-(Trifluolomethyl)benzaldehyde (1.74 g, 10 mmol) was subjected to general procedure as described above. Colorless crystals (1.71 g, 75%). mp 176–177 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1620 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.83-1.89 (m, 2H, CH₂), 3.51 (t, *J* = 5.7 Hz, 4H, 2 × CH₂), 4.92 (br s, 1H, NH), 7.61 (d, *J* = 8.3 Hz, 2H, Ar), 7.76 (d, *J* = 8.3 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.6, 42.4 (2C), 122.6, 125.2 (q, *J* = 3.7 Hz, 2C), 126.4 (2C), 131.4 (d, *J* = 32.3 Hz), 140.7, 153.3; ¹⁹F NMR (500 MHz, CDCl₃) δ –62.6. *Anal.* calcd for C₁₁H₁₁F₃N₂: C, 57.89; H, 4.86; N, 12.28. Found: C, 57.89; H, 4.82; N, 12.29.

2-(4-Nitrophenyl)-1,4,5,6-tetrahydropyrimidine (**1g**): *p*-Nitrobenzaldehyde (1.51 g, 10 mmol) was subjected to general procedure as described above. Yellow crystals (1.63 g, 80%): mp 169–171 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1623 (C=N), 1519 (NO₂), 1339 (NO₂); ¹H NMR (400 MHz, CDCl₃) δ

1.85-1.90 (m, 2H, CH₂), 3.54 (t, J = 5.6 Hz, 4H, 2 × CH₂), 5.08 (br s, 1H, NH), 7.83 (d, J = 9.1 Hz, 2H, Ar), 8.20 (d, J = 9.1 Hz, 2H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.4, 42.3 (2C), 123.4 (2C), 127.0 (2C), 143.2, 148.3, 152.7. *Anal.* calcd for C₁₀H₁₁N₃O₂: C, 58.53; H, 5.40; N, 20.48. Found: C, 58.61; H, 5.45; N, 20.48.

1-Methyl-2-phenyl-1,4,5,6-tetrahydropyrimidine (**4**): Benzaldehyde (1.06 g, 10 mmol) and *N*-methyl propandiamine (0.97 g, 11 mmol) was subjected to general procedure as described above (without further purification after demineralisation). Yellow oil (1.49 g, 85%); IR (neat) cm⁻¹: 1600 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.92-1.98 (m, 2H, CH₂), 2.74 (s, 3H, NCH₃), 3.27 (t, *J* = 5.6 Hz, 2H, CH₂), 3.51 (t, *J* = 5.2 Hz, 2H, CH₂), 7.32-7.40 (m, 5H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 22.0, 40.3, 45.0, 49.0, 127.9 (2C), 128.0 (2C), 128.4, 138.1, 159.1; HRMS (EI): *m/z* calcd for C₁₁H₁₃N₂ [M - 1]⁻ 173.1084; found: 173.1082.

Procedure for the C-H Hydroxylation (Table 1, entry 10). Synthesis General of 2,3-Dihydro-1H-9-oxa-4,10a-diazaphenanthren-10-one (3a): DMF (0.83 mL) and water (4.5 µL, 0.25 mmol) were added to a flask containing 2-phenyltetrahydropyrimidine (40.1 mg, 0.25 mmol) and Cu(OAc)₂ (45.4 mg, 0.25 mmol) under O₂ atmosphere. After stirring at 130 °C for 20 min, TMEDA (N,N,N',N'-tetramethylethylenediamine) (150 µL, 1 mmol) was added, and the mixture was stirred for 1 min at the same temperature. The reaction mixture was concentrated in vacuo. To a stirring solution of this residue and TMEDA (150 µL, 1 mmol) in CH₂Cl₂ (16.6 mL) was added dropwise a solution of triphosgene (77.9 mg, 0.26 mmol) in CH₂Cl₂(1.7 mL) at 0 °C. After stirring at room temperature for 1h, the mixture was quenched with sat. NH₄Cl, and CH₂Cl₂ was removed in vacuo. The resulting mixture was made basic with 28% NH₄OH. The whole was extracted with EtOAc. The extract was washed with sat. NH₄Cl-28% NH₄OH, brine, and dried over MgSO₄. The filtrate was concentrated in vacuo. The residue was purified by flash chromatography over silica gel with *n*-hexane-EtOAc (1:1) to give 3a as colorless crystals (35.2 mg, 70%): mp 146–147 °C (from CHCl₃–n-hexane); IR (neat) cm⁻¹: 1730 (C=O), 1647 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.98-2.04 (m, 2H, CH₂), 3.68 (t, *J* = 5.6 Hz, 2H, CH₂), 3.95 (t, J = 6.0 Hz, 2H, CH₂), 7.14 (d, J = 8.3 Hz, 1H, Ar), 7.23-7.30 (m, 1H, Ar), 7.48-7.51 (m, 1H, Ar), 8.02 (d, J = 7.8 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 42.5, 44.1, 116.2, 125.0, 125.5, 127.8, 129.0, 132.9, 147.5, 150.4; HRMS (FAB): m/z calcd for C₁₁H₁₁N₂O₂ [M + H]⁺ 203.0821; found: 203.0813.

7-Methoxy-2,3-dihydro-*1H***-9-oxa-4,10a-diazaphenanthren-10-one** (**3b**): 2-(4-Methoxy-phenyl)-1,4,5,6-tetrahydropyrimidine (47.6 mg, 0.25 mmol) was subjected to general procedure as described above. Pale yellow solid (37.3 mg, 64%): mp 160–161 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1731 (C=O), 1650 (C=N); ¹H NMR (500 MHz, CDCl₃) δ 1.97-2.02 (m, 2H, CH₂), 3.64 (t, *J* = 5.7 Hz, 2H, CH₂), 3.85 (s, 3H, OCH₃), 3.92 (t, *J* = 6.0 Hz, 2H, CH₂), 6.59 (d, *J* = 2.3 Hz, 1H, Ar), 6.79 (dd, *J* = 8.6, 2.3 Hz, 1H, Ar), 7.90 (d, *J* = 8.6 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.5, 42.5, 44.0, 55.7, 100.0, 108.8, 112.6, 126.6, 142.7, 147.8, 151.7, 163.3; HRMS (FAB): *m/z* calcd for C₁₂H₁₃N₂O₃ [M + H]⁺ 233.0926; found: 233.0921.

7-Methyl-2,3-dihydro-*1H*-4,10a-diaza-9-oxaphenanthren-10-one (3c): 2-(4-Tolyl)-1,4,5,6-tetrahydropyrimidine (43.6 mg, 0.25 mmol) was subjected to general procedure as described above. Yellow crystals (32.8 mg, 61%): mp 153–154 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1736 (C=O), 1650 (C=N); ¹H NMR (500 MHz, CDCl₃) δ 1.98-2.02 (m, 2H, CH₂), 2.40 (s, 3H, CH₃), 3.66 (t, *J* = 5.4 Hz, 2H, CH₂), 3.93 (t, *J* = 6.0 Hz, 2H), 6.93 (s, 1H, Ar), 7.05 (d, *J* = 8.0 Hz, 1H, Ar), 7.88 (d, *J* = 8.0 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.4, 21.5, 42.5, 44.1, 113.4, 116.2, 125.2, 126.2, 143.0, 144.0, 148.0, 150.4; HRMS (FAB): *m/z* calcd for C₁₂H₁₃N₂O₂ [M + H]⁺ 217.0977; found: 217.0979.

7-Bromo-2,3-dihydro-*1H***-4,10a-diaza-9-oxaphenanthren-10-one** (3d): 2-(4-Bromophenyl)-1,4,5,6-tetrahydropyrimidine (59.8 mg, 0.25 mmol) was subjected to general procedure as described above. Pale yellow crystals (31.3 mg, 45%): mp 206–207 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1729 (C=O), 1651 (C=N); ¹H NMR (500 MHz, CDCl₃) δ 1.98-2.03 (m, 2H, CH₂), 3.65 (t, *J* = 5.7 Hz, 2H, CH₂), 3.93 (t, *J* = 6.0 Hz, 2H, CH₂), 7.31 (d, *J* = 1.7 Hz, 1H, Ar), 7.37 (dd, *J* = 8.6, 1.7 Hz, 1H, Ar), 7.87 (d, *J* = 8.6 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.3, 42.6, 44.2, 115.2, 119.4, 126.4, 126.8, 128.4, 142.1, 147.0, 150.7; HRMS (FAB): *m/z* calcd for C₁₁H₁₀BrN₂O₂ [M + H, ⁷⁹Br]⁺ 280.9926; found: 280.9922.

7-(Methoxycarbonyl)-2,3-dihydro-*1H***-4,10a-diaza-9-oxaphenanthren-10-one** (**3e**): 2-[(4-Methoxycarbonyl)phenyl]-1,4,5,6-tetrahydropyrimidine (54.6 mg, 0.25 mmol) was subjected to general procedure as described above. Pale yellow crystals (30.2 mg, 46%): mp 136–137 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1741 (C=O), 1718 (C=O), 1644 (C=N); ¹H NMR (500 MHz, CDCl₃) δ 2.00-2.05 (m, 2H, CH₂), 3.70 (t, *J* = 5.4 Hz, 2H, CH₂), 3.94-3.96 (m, 5H, CH₂,OMe), 7.78 (d, *J* = 1.4 Hz, 1H, Ar), 7.88 (dd, *J* = 8.6, 1.4 Hz, 1H, Ar), 8.09 (d, *J* = 8.6 Hz, 1H, Ar); ¹³C NMR (125 MHz, CDCl₃) δ 20.2, 42.5, 44.4, 52.6, 117.6, 119.7, 125.6, 125.8, 134.3, 142.2, 147.1, 150.2, 165.4; HRMS (FAB): *m/z* calcd for C₁₃H₁₃N₂O₄ [M + H]⁺ 261.0875; found: 261.0874.

7-(Trifuluoromethyl)-2,3-dihydro-*1H***-4,10a-diaza-9-oxaphenanthren-10-one** (**3f**): 2-[4-(Trifuluoromethyl)phenyl]-1,4,5,6-tetrahydropyrimidine (57.1 mg, 0.25 mmol) was subjected to general procedure as described above. Yellow solid (28.8 mg, 43%): mp 141–142 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1739 (C=O), 1650 (C=N); ¹H NMR (500 MHz, CDCl₃) δ 2.00-2.05 (m, 2H, CH₃), 3.70 (t, *J* = 5.7 Hz, 2H, CH₂), 3.95 (t, *J* = 6.0 Hz, 2H, CH₂), 7.40 (d, *J* = 1.1 Hz, 1H, Ar), 7.49 (dd, *J* = 8.0, 1.1 Hz, 1H, Ar), 8.15 (d, *J* = 8.0 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 42.7, 44.5, 113.9 (q, *J* = 4.1 Hz), 119.3, 121.6 (q, *J* = 3.6 Hz), 124.5, 126.7, 134.7 (q, *J* = 33.7 Hz), 141.8, 146.9, 150.4; ¹⁹F NMR (500 MHz, CDCl₃) δ –63.0; HRMS (FAB): *m/z* calcd for C₁₂H₁₀F₃N₂O₂ [M + H]⁺ 271.0694; found: 271.0692.

7-Nitro-2,3-dihydro-*1H***-4,10a-diaza-9-oxaphenanthren-10-one** (**3g**): 2-(4-Nitrophenyl)-1,4,5,6-tetrahydropyrimidine (51.3 mg, 0.25 mmol) was subjected to general procedure as described above. Yellow crystals (11.9 mg, 19%): mp 235–236 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1732 (C=O), 1641 (C=N), 1531 (NO₂), 1349 (NO₂). ¹H NMR (400 MHz, CDCl₃) δ 2.01-2.07 (m, 2H, CH₂), 3.72 (t, *J* = 5.6 Hz, 2H, CH₂), 3.96 (t, *J* = 6.0 Hz, 2H, CH₂), 8.00 (d, *J* = 2.2 Hz, 2H, Ar), 8.08 (dd, *J* = 8.8, 2.2 Hz, 1H, Ar), 8.22 (d, *J* = 8.8 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.1, 42.6, 44.5, 112.2, 119.4, 121.4, 127.1, 141.3, 146.4, 150.3, 150.5; HRMS (FAB): *m/z* calcd for C₁₁H₁₀N₃O₄ [M + H]⁺ 248.0671; found: 248.0670.

C-H Amidation with BocNH₂. Synthesis of 3,4-Dihydro-2*H***-pyrimido[1,2-***c***]quinazolin-6(7***H***)-one (7a): DMF (0.83 mL) was added to a flask containing 2-phenyltetrahydropyrimidine (40.1 mg, 0.25 mmol), Cu(OAc)₂ (45.4 mg, 0.25 mmol) and** *tert***-butyl carbamate (87.9 mg, 0.75 mmol) under O₂ atmosphere. After stirring at 100 °C for 40 min, the mixture was concentrated in vacuo. The residue was purified by flash chromatography over aluminium oxide with CHCl₃ [gradationally to CHCl₃–MeOH (99:1)] to give 7a** as a white solid (26.5 mg, 53%): mp 250–251 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1682 (C=O), 1616 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.95-2.00 (m, 2H, CH₂), 3.67 (t, *J* = 5.6 Hz, 2H, CH₂), 3.94 (t, *J* = 6.0 Hz, 2H, CH₂), 6.86 (d, *J* = 8.0 Hz, 1H, Ar), 7.09-7.13 (m, 1H, Ar), 7.38-7.42 (m, 1H, Ar), 8.07 (d, *J* = 8.0 Hz, 1H, Ar), 8.30 (br s, 1H, NH); ¹³C NMR (100 MHz, CDCl₃) δ 20.3, 40.8, 44.5, 114.6, 116.5, 123.0, 125.8, 132.0, 136.5, 145.7, 151.2; HRMS (FAB): *m/z* calcd for C₁₁H₁₂N₃O [M + H]⁺ 202.0980; found: 202.0988.

C-H Amidation with TsNH₂. Synthesis of 7-Tosyl-3,4-dihydro-2H-pyrimido[1,2-c]quinazolin-6(7H)-one (7b): DMF (0.83 mL) was added to a flask containing 2-phenyltetrahydropyrimidine (40.1 mg, 0.25 mmol), Cu(OAc)₂ (45.4 mg, 0.25 mmol) and p-toluene sulfonamide (85.6 mg, 0.5 mmol) under O₂ atmosphere. After stirring at 130 °C for 20 min, the mixture was concentrated in vacuo followed by flash chromatography over aluminium oxide with CHCl3-MeOH (95:5) to give ortho-amidated compound as a crude material. To a stirring solution of the ortho-amidated compound and Et₃N (145 µL, 1.0 mmol) in CH₂Cl₂ (16.6 mL) was added dropwise a solution of triphosgene (77.9 mg, 0.26 mmol) in CH₂Cl₂(1.7 mL) at 0 °C. After stirring at room temperature for 1h, the mixture was quenched with sat. NaHCO₃ and CH₂Cl₂ was removed in vacuo. The whole was extracted with EtOAc. The extract was washed with sat. NaHCO₃, brine, and dried over MgSO₄. The filtrate was concentrated in vacuo. The residue was purified by flash chromatography over silica gel with n-hexane-EtOAc (1:1) to give 7b as colorless crystals (42.2 mg, 47%): mp 159–161 °C (from CHCl₃–*n*-hexane); IR (neat) cm⁻¹: 1695 (C=O), 1644 (C=N); ¹H NMR (400 MHz, CDCl₃) δ 1.85-1.91 (m, 2H, CH₂), 2.46 (s, 3H, CH₃), 3.63 (t, J = 5.7 Hz, 2H, CH₂), 3.75 (t, J = 6.2 Hz, 2H, CH₂), 7.27-7.31 (m, 1H, Ar), 7.37 (d, J = 8.3 Hz, 2H, Ar), 7.48-7.53 (m, 1H, Ar), 7.87 (d, J = 8.5 Hz, 1H, Ar), 8.03 (d, J = 8.3 Hz, 2H, Ar), 8.07 (dd, J = 8.0, 1.7 Hz, 1H, Ar); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 21.8, 41.8, 44.6, 120.3, 121.0, 125.7, 126.4, 128.4 (2C), 129.8 (2C), 131.3, 134.6, 136.7, 144.5, 145.4, 148.3; HRMS (FAB): m/z calcd for C₁₈H₁₈N₃O₃S [M + H]⁺ 356.1069; found: 356.1074.

DATIM Tue Dec 09 14:45:33 2008 100.40 MHz 125.00 KHz 10500.00 Hz 32768 27118.64 Hz 200 1.2083 sec 1.7920 sec 5.10 usec 25.5 c 77.00 ppm 0.12 Hz

