Electronic Supplementary Information

From vinyl Pyranoses to Carbasugars by an iron-catalyzed Reaction complementary to Classical Ferrier Carbocyclisation

Dinh Hung Mac, a Ramesh Samineni, a, b Julien Petrignet, a Pabbaraja Srihari, b Srivari Chandrasekhar, b Jhillu Singh Yadav, * b René Grée. * a

a Université de Rennes 1, Laboratoire de Chimie et Photonique Moléculaires, CNRS UMR 6510, Avenue du General Leclerc, 35042 Rennes Cedex, France.
b Indian Institute of Chemical Technology, 500607, Hyderabad, India.

Supporting Information

(11 pages)

I General methods S 2

II Experimental procedures and characterizations S 3

II.1 Tetrahydro-6-vinylpyran-2-one (4a) S 2

II.2 Tetrahydro-6-((E)-prop-1-enyl)pyran-2-one(4b) S 3

II.3 Tetrahydro-6-styrylpyran-2-one(4c) S 4

II.4 Tetrahydro-6-vinyl-2H-pyran-2-ol (5a) S 4

II.5 Tetrahydro-6-(prop-1-enyl)-2H-pyran-2-ol (5b) S 5

II.6 Tetrahydro-6-styryl-2H-pyran-2-ol (5c) S 5

II.7 2-Methylcyclohex-2-enone (6a) S 6

II.8 2-Ethylcyclohex-2-enone (6b) S 6

II.9 2-Benzylcyclohex-2-enone (6c) S 7

II.10 (E)-Ethyl 3-(6-hydroxy-tetrahydro-2H-pyran-2-yl)acrylate (5d) S 7

II.11 Ethyl 2-(6-oxocyclohex-1-enyl)acetate (6d) S 8

II.12 (4S,5R,6S)-4,5,6-Tris(benzyloxy)-2-methylcyclohex-2-enone (9) S 9

II.13 (4S,5R,6S)-4,5,6-Trihydroxy-2-methylcyclohex-2-enone (10) S 10

II.14 (2S,3R,4S,6R)-2,3,4-tris(benzyloxy)-6-methylcyclohexanone (11) S 10

II.15 (2S,3R,4S,6R)-2,3,4-Trihydroxy-6-methylcyclohexanone (12) S 11
I - General Methods

All reactions were carried out under argon or nitrogen atmosphere. TLC spots were examined under UV light and revealed by sulfuric acid-anisaldehyde, KMnO₄ solution or phosphomolybdic acid. Dichloromethane was distilled from calcium hydride, tetrahydrofuran and diethylether were distilled from sodium/benzophenone, methanol was distilled over magnesium.

CAUTION: all reactions involving Fe(CO)₅ have to be carried out under a well ventilated hood. These iron carbonyl-mediated reactions have been performed in usual pyrex glassware equipment. At the end of the reaction the residue of Fe(CO)₅ can be destroyed by addition of strong oxidizing agents such as Ce(NH₄)₂(NO₃)₆ or FeCl₃.

NMR spectra were obtained at 300 MHz or 500 MHz for ¹H and 75 MHz or 125MHz for ¹³C with BRUCKER AVANCE 300 or 500 spectrometers. Chemical shifts are given in parts per million (δ) relative to chloroform (7.26 ppm) or benzene (7.16 ppm) residual peaks. Assignments of ¹H and ¹³C resonances for complex structures were confirmed by extensive 2D experiments (COSY, HMQC, HMBC). Mass spectral analyses were performed at the Centre Régional de Mesures Physiques de l'Ouest (CRMPO) in Rennes (France). Rotation data were recorded on a Perkin-Elmer 241 Polarimeter.

II Experimental procedures and characterizations

II.1 Tetrahydro-6-vinylpyran-2-one (4a)

To a solution 4-bromoorthobutyrate (764 µL, 4.40 mmol) in diethyl ether (12 mL) cooled at −78°C was added dropwise a solution of t-butylithium (5.24 mL, 7.86 mmol, 1.5 M in hexane). The cloudy mixture was stirred at −78°C for 1h and then at 0°C for 50 min. After recooling to −78°C, a solution of acrolein (120 µL, 1.57 mmol) in Et₂O (3 mL) was added and
reaction mixture was stirred at −78°C for 30 min and then at 0°C for 40 min. The reaction mixture was quenched with saturated solution of ammonium chloride (15 mL). Aqueous phase was extracted with Et$_2$O (2 x 20 mL) and the combined organic phases were dried over MgSO$_4$, filtered and concentrated under reduced pressure. The orthoester group was hydrolyzed by stirring during 20 min the previous crude oil in a THF-H$_2$O (15 mL − 5 mL) solution in presence of 5 drops of HCl 6N. After extraction with diethyl ether, the residue was purified by column chromatography on silica gel with Pentane/AcOEt (60/40) as eluent to afford hydroxy ester 3a as a colorless oil.

This product (155 mg, 0.981 mmol) was dissolved in anhydrous acetonitrile (10 mL) in presence of DBU (175 µL, 1.18 mmol) and the reaction mixture was stirred overnight at room temperature. After concentration of the residue in vacuo, reaction mixture was resolubilized in acetonitrile and stirred during 2h at room temperature. Solvent was evaporated and the residue was purified by column chromatography on silica gel with CH$_2$Cl$_2$ as eluent to afford the lactone 4a (100 mg, 81%) as a colorless oil [Rf 0.2; AcOEt/Pentane: 9/1].

1H NMR (300 MHz, CDCl$_3$): δ = 1.56-2.00 (m, 4H), 2.39-2.61(m, 2H), 4.79 (m, 1H), 5.18-5.34 (m, 2H), 5.84 (ddd,1H, $J = 5.5, 10.6, 16.2$Hz).

13C NMR (75 MHz, CDCl$_3$): δ = 18.0, 27.8, 29.5, 30.9, 80.2, 116.8, 136.1, 171.1.

II.2 Tetrahydro-6-((E)-prop-1-enyl)pyran-2-one(4b)

This compound was obtained by the method employed for the preparation of 4a, and using 4-bromoorthobutyrate (764 µL, 4.40 mmol), t-BuLi (5.24 mL, 7.86 mmol, 1.5 M in hexane), crotonaldehyde (130 µL, 1.57 mmol), Et$_2$O (15 mL), DBU (224 µL, 1.50 mmol) and CH$_3$CN (10 mL). Purification by column chromatography using CH$_2$Cl$_2$ as eluent afforded the lactone 4b as a colorless oil (120 mg, 54% overall yield) [Rf: 0.2; Et$_2$O/Pentane 5/5].

1H NMR (300 MHz, CDCl$_3$): δ = 1.54-1.96 (m, 7H), 2.36-2.60 (m, 2H), 4.72 (m, 1H), 5.44-5.53 (m, 1H), 5.70-5.81 (m, 1H).

13C NMR (75 MHz, CDCl$_3$): δ = 17.6, 18.2, 28.3, 29.5, 80.7, 129.3, 129.4, 171.4.
II.3 Tetrahydro-6-styrylpyran-2-one (4c)

This compound was obtained by the method employed for the preparation of 4a, and using 4-bromoorbutoxyrate (764 µL, 4.40 mmol), t-BuLi (5.24 mL, 7.86 mmol, 1.5 M in hexane), trans-cinnamaldehyde (205 µL, 1.57 mmol), Et2O (15 mL), DBU (224 µL, 1.50 mmol) and CH3CN (10 mL). Purification by column chromatography using CH2Cl2 as eluent afforded the lactone 4c as a colorless oil (205 mg, 59% overall yield) [Rf: 0.6; CH2Cl2/Et2O: 9/1].

1H NMR (300 MHz, CDCl3): δ = 1.71-2.13 (m, 4H), 2.48-2.71 (m, 2H), 4.98-5.04 (m, 1H), 6.22 (dd, 1H, J = 15.9, 6.0Hz), 6.69 (dd, J = 16.0, 0.9Hz), 7.35 (m, 5H).

13C NMR (75 MHz, CDCl3): δ = 18.3, 28.5, 29.6, 80.4, 126.7, 127.1, 128.2, 128.7, 132.1, 136.6, 171.2.

II.4 Tetrahydro-6-vinyl-2H-pyran-2-ol (5a)

To a solution of lactone 4a (73 mg, 0.58 mmol) in CH2Cl2 (4 mL) cooled at −78°C was added dropwise a solution of DIBAl-H (1.1 mL, 1.1 mmol, 1.0 M solution in toluene). The reaction mixture was stirred at −78°C for 2h and then was quenched with a saturated solution of sodium and potassium tartrate (5 mL). After stirring during 1h and decantation, aqueous phase was extracted with CH2Cl2 (2 x 5 mL). The combined organic phases were dried over MgSO4, filtered and concentrated under reduced pressure to afford pure lactol 5a as a colorless oil (59 mg, 80% yield, mixture of diastereoisomers: 50/50 by 1H NMR) [Rf: 0.25; CH2Cl2/Et2O: 9/1]

1H NMR (300 MHz, CDCl3): δ = 1.33-1.92 (m, 12H), 3.19 (s, 1H), 3.69 (d, 1H, J = 5.5 Hz), 3.93-4.02 (m, 1H), 4.46-4.51 (m, 1H), 4.76-4.81 (m, 1H), 5.09-5.30 (m, 4H), 5.34-5.38 (m, 1H), 5.79-5.95 (m, 2H).

13C NMR (75 MHz, CDCl3): δ = 17.2, 21.9, 29.5, 30.4, 31.2, 32.4, 69.7, 91.9, 96.5, 115.0, 115.2, 138.2, 139.2.

HRMS m/z [M-H2O] + Calculated for C7H10O: 110.0732, found 110.0728.
II.5 Tetrahydro-6-(prop-1-enyl)-2H-pyran-2-ol (5b):

![Structure of 5b](image)

This compound was obtained by the method used for the preparation of 5a, starting with 135 mg of lactone 4b, 1.45 mL of DIBAL-H (as a 1M solution in toluene). Purification by column chromatography using Et₂O/Pentane 1/1 as eluent afforded the lactol 5b as a colorless oil (105 mg, 77%, mixture of diastereoisomers: 45/55 by ¹H NMR) [Rf: 0.3; Et₂O/Pentane 1/1].

¹H NMR (300 MHz, CDCl₃): δ = 1.23-1.91 (m, 6H), 1.68 (d, J = 6.4Hz, 3H), 3.20 (broad s, 1H), 3.70 (br, 1H), 3.89 (dd, J = 6.9, 10.4Hz, 1H), 4.39 (t, J = 9.3Hz, 1H), 4.72 (d, J = 8.9Hz, 1H), 5.29 (broad s, 1H), 5.48 (dd, J = 6.3, 17.1Hz, 1H), 5.68 (dq, J = 6.3, 15.3Hz, 1H).

¹³C NMR (75 MHz, CDCl₃): δ = 17.7, 17.8, 21.9, 29.5, 30.7, 31.5, 32.4, 69.7, 70.0, 91.9, 96.4, 127.2, 127.4, 131.3, 132.1.

HRMS m/z M⁺ Calculated for C₈H₁₄O₂: 142.0994, found 142.0996.

II.6 Tetrahydro-6-styryl-2H-pyran-2-ol (5c):

![Structure of 5c](image)

This compound was obtained by the method used for the preparation of 5a, starting with 95 mg of lactone 4c, 0.52 mL of DIBAL-H (as a 1M solution in toluene). Purification by column chromatography using CH₂Cl₂/Et₂O:9/1 as eluent afforded the lactol 5c as a colorless oil (70mg, 73%, mixture of diastereoisomers: 50/50 by ¹H NMR) [Rf: 0.3; CH₂Cl₂/Et₂O: 9/1].

¹H NMR (300 MHz, CDCl₃): δ = 1.36-2.04 (m, 12H), 3.41-3.59 (m, 1H), 3.91-4.09 (m, 1H), 4.12-4.18 (m, 1H), 4.66-4.72 (m, 1H), 4.82-4.87 (m, 1H), 5.40-5.44 (m, 1H), 6.22 (dd, 1H, J = 16.0, 6.2 Hz), 6.27 (dd, 1H, J = 16.0, 6.2 Hz), 6.61 (d, 1H, J = 16.0 Hz), 6.64 (d, 1H, J = 16.0 Hz), 7.24-7.42 (m, 1H).

¹³C NMR (75 MHz, CDCl₃): δ = 17.3, 22.0, 29.6, 30.9, 31.6, 32.4, 69.6, 76.8, 92.0, 96.5, 126.46, 126.50, 127.56, 127.63, 128.5, 129.6, 130.3, 130.4, 130.5, 136.8, 136.9.

HRMS m/z M⁺ Calculated for C₁₃H₁₆O₂: 204.1150, found 204.1158.
II.7 2-Methylcyclohex-2-enone (6a)

\[
\begin{array}{c}
\text{O} \\
\end{array}
\]

A solution of lactol 5a (50mg, 0.39 mmol) and Fe(CO)\(_5\) (5µL) in dry THF (2 mL), under magnetic stirring in a pyrex round bottomed flask, was irradiated with a Philip HPK125 W during 1 hour. After being cooled to room temperature and concentrated, the residue was diluted in diethylether, filtered on a short pad of silica gel and concentrated under vacuum to afford a mixture of aldol products (45 mg).

To an ice–cold solution of previous aldol products and Et\(_3\)N (10 equiv) in CH\(_2\)Cl\(_2\), was added MsCl (3equiv) at 0°C. After being stirred at RT during 24 hours the mixture was diluted with CH\(_2\)Cl\(_2\) and H\(_2\)O. Then the organic phase was separated and the aqueous phase was extracted with CH\(_2\)Cl\(_2\). The combined organic phases were dried over MgSO\(_4\), filtered and concentrated under vacuum to afford a residue, which was purified by chromatography on silica gel with Pentane/Et\(_2\)O (80/20) as eluent to afford cyclohexenone 6a as a colorless liquid 18 mg, (42% over 2 steps) [Rf: 0.7; Pentane/Et\(_2\)O: 1/1].

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 1.70\) (q, 3H, \(J = 1.8Hz\)), 1.9 (quin, 2H, \(J = 6.4Hz\)), 2.30-2.20 (m, 2H), 2.40 (t, 2H, \(J = 6.7Hz\)), 6.70-6.64 (m, 1H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 16.0, 23.3, 26.0, 38.3, 135.7, 145.6, 200.0\).

II.8 2-Ethylcyclohex-2-enone (6b)

\[
\begin{array}{c}
\text{O} \\
\end{array}
\]

This compound was obtained by the method used for the preparation of 6a, starting with 100 mg of lactol 5b (0.7 mmol). Purification by column chromatography using Et\(_2\)O/Pentane 1/1 as eluent (Rf: 0.7) afforded the cyclohexenone 6b as a colorless oil (43 mg, 50% over 2 steps) [Rf: 0.7; Pentane/Et\(_2\)O: 1/1].

\(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta = 1.01\) (t, 3H, \(J = 1.0Hz\)), 1.98 (q, 2H, \(J = 6.3Hz\)), 1.98 (q, 2H, \(J = 7.4Hz\)), 2.33-2.38 (m, 2H) 2.43 (t, 2H, \(J = 6.7Hz\)), 6.71 (broad s, 1H).

\(^13\)C NMR (75 MHz, CDCl\(_3\)): \(\delta = 12.8, 22.5, 23.2, 26.0, 38.6, 141.2, 143.9, 199.6\).
II.9 2-Benzylcyclohex-2-enone (6c)

This compound was obtained by the method used for the preparation of 6a starting with 70mg of lactol 5c (0.34 mmol). Purification by column chromatography using Et_2O/Pentane 1/1 as eluent afforded the cyclohexenone 6c as a colorless oil (35 mg, 55% over 2 steps) [Rf: 0.5; Et_2O/Pentane 1/1].

^1H NMR (300 MHz, CDCl_3): δ = 2.0 (q, 2H, J = 6.7 Hz), 2.32-2.37 (m, 2H) 2.47 (t, 3H, J = 6.7Hz), 3.54 (d, 2H, J = 1.1Hz), 6.57 (t, 1H, J = 4.2Hz), 7.18-7.32 (m, 5H).

^13C NMR (75 MHz, CDCl_3): δ = 23.1, 26.1, 35.4, 38.5, 126.1, 128.4, 129.2, 139.5, 139.8, 146.4, 199.0.

II.10 (E)-Ethyl 3-(6-hydroxy-tetrahydro-2H-pyran-2-yl)acrylate (5d)

Step 1: synthesis of lactol 5a by route 2

The commercially available glutaraldehyde, as a 50% aqueous solution, was saturated with sodium chloride an extracted 5 times with ether. The ether extract was dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure to give crude glutaraldehyde. To the solution of previous glutaraldehyde (1 g, 10 mmol) in THF (20 mL) at 0°C was added vinylmagnesium bromide (12 mL, 1M in THF). After 2 h, the reaction was quenched by 10% NH_4Cl (20 mL). The aqueous phase was extracted by Et_3O (3x20 mL). The combined organic phases were dried over MgSO_4, filtered and concentrated under reduced pressure to afford a residue, which was purified by chromatography on silica gel with Pentane/AcOEt (9/1) as eluent to give pure lactol 5a as a colorless oil (820 mg, 64%).
Step 2: synthesis of lactol 5d by metathesis reaction

A solution of lactol 5a (128 mg, 1 mmol), ethyl acrylate (660 μl, 6 mmol) and second-generation Grubbs catalyst (16 mg, 3% mol) was heated at 40°C in CH₂Cl₂ (10 mL) during 16 h. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel using as eluent mixtures of pentane and Et₂O (95:5 then 60:40). The lactol 5d was obtained as a viscous oil (112 mg, 56%) [Rf: 0.1; CH₂Cl₂/Et₂O: 9/1].

\[^1H \text{ NMR (300 MHz, CDCl}_3\] \(\delta = 1.22 \ (t, \ J = 7.1\text{Hz}, \ 3\text{H}), \ 1.29\text{-}1.93 \ (m, \ 6\text{H}), \ 3.87 \ (\text{broad s, } 1\text{H}), \ 4.14 \ (q, \ J = 7.3\text{Hz}, \ 1\text{H}), \ 4.35 \ (d, \ J = 6.1\text{Hz}, \ 1\text{H}), \ 4.61 \ (m, \ 1\text{H}), \ 4.73 \ (m, \ 1\text{H}), \ 5.30 \ (s, \ 1\text{H}), \ 5.94 \ (dd, \ J = 1.8\text{Hz}, \ 1\text{H}), \ 6.85 \ (dd, \ J = 4.6, \ 15.7\text{Hz}) \]

\[^{13}C \text{ NMR (75 MHz, CDCl}_3\] \(\delta = 14.1, \ 17.3, \ 22.0, \ 29.5, \ 30.0, \ 30.7, \ 32.1, \ 60.4, \ 60.42, \ 67.5, \ 67.9, \ 74.6, \ 91.7, \ 96.4, \ 119.7, \ 120.1, \ 146.9, \ 148.4, \ 166.7, \ 166.8. \)

HRMS m/z Calculated for [M-H₂O]+:C₁₀H₁₄O₃ 182.0943 found 182.0941.

II.11 Ethyl 2-(6-oxocyclohex-1-enyl)acetate (6d)

![Ethyl 2-(6-oxocyclohex-1-enyl)acetate (6d)](image)

This compound was obtained by the method used for the preparation of 6a starting with 100mg of lactol 5d (0.5 mmol). Purification by column chromatography using Et₂O/Pentane 1/1 as eluent afforded the cyclohexenone 6d as a colorless oil (50 mg, 55% over 2 steps) [Rf: 0.5; Et₂O/Pentane: 1/1].

\[^1H \text{ NMR (300 MHz, CDCl}_3\] \(\delta = 1.18 \ (t, \ J = 7.1\text{Hz}, \ 3\text{H}), \ 1.97 \ (\text{quin, } J = 6.4\text{Hz}, \ 2\text{H}), \ 2.34 \ (m, \ 2\text{H}), \ 2.41 \ (t, \ J = 6.8\text{Hz}, \ 4\text{H}), \ 3.11 \ (d, \ J = 1.1\text{Hz}, \ 2\text{H}), \ 4.06 \ (q, \ J = 7.1\text{Hz}, \ 2\text{H}), \ 6.81 \ (t, \ J = 4.2\text{Hz}, \ 1\text{H}) \]

\[^{13}C \text{ NMR (75 MHz, CDCl}_3\] \(\delta = 14.1, \ 22.9, \ 26.0, \ 35.4, \ 37.9, \ 60.8, \ 133.6, \ 148.3, \ 171.4, \ 198.3. \)
II.12 (4S,5R,6S)-4,5,6-Tris(benzyloxy)-2-methylcyclohex-2-enone (9)

A solution of lactol 7 (890 mg, 2 mmol) and Fe(CO)$_5$ (26 µl, 10% mol) in dry THF (20 mL) was irradiated with a Philips HPK125 W during 1 hour. After being cooled to room temperature and concentrated, the residue was diluted in ether, filtered on a short pad of silica gel and concentrated under vacuum to afford a mixture of aldol products. The crude product was purified by column chromatography on silica gel with Pentane/AcOEt: 7/3 as eluent to afford 845 mg of product 8 (95%, a 45/50/5 mixture of isomers by 1H NMR).

To an ice–cold solution of previous aldol products (700 mg, 1.57 mmol) and Et$_3$N (660 µl, 3 equiv) in dry CH$_2$Cl$_2$ (15 mL), was added MsCl (243 µl, 2 equiv) at 0°C. After being stirred at RT for 24 hours, the mixture was diluted with CH$_2$Cl$_2$ and H$_2$O. The organic phase was separated and the aqueous phase was extracted with CH$_2$Cl$_2$ (3x20 mL). The combined organic phases were dried over MgSO$_4$, filtered and concentrated under vacuum to afford a residue, which was purified by chromatography on silica gel with Pentane/AcOEt (9/1) as eluent to afford cyclohexenone 9 as a white solid (464 mg, 69%) [Rf: 0.3; Pentane/AcOEt: 9/1].

Mp: 64–66°C

1H NMR (300 MHz, CDCl$_3$): $\delta = 1.75$ (dd, $J = 2.1$, 1.6 Hz, 3H), 3.87 (dd, $J = 10.7$, 7.8 Hz, 1H), 3.95 (d, $J = 10.7$ Hz, 1H), 4.24 (ddq, $J = 7.8$, 3.3, 2.1 Hz, 1H), 4.67 (d, $J = 11.5$ Hz, 2H), 4.73 (d, $J = 10.9$ Hz, 1H), 4.76 (d, $J = 11.6$ Hz, 1H), 4.89 (d, $J = 10.9$ Hz, 1H), 5.03 (d, $J = 10.3$ Hz, 1H), 6.52 (dq, $J = 3.3$, 1.6 Hz, 1H), 7.23-7.39 (m, 15H).

13C NMR (75 MHz, CDCl$_3$): $\delta = 15.3$, 73.5, 74.6, 75.6, 78.5, 83.9, 84.7, 127.78, 127.8, 127.91, 127.98, 128.2, 128.3, 128.38, 128.41, 128.6, 135.0, 137.8, 137.9, 138.3, 143.0, 197.6.

$[\alpha]^{20}_{D} -3.6$ (c 0.19, MeOH).
II.13 (4S,5R,6S)-4,5,6-Trihydroxy-2-methylcyclohex-2-enone (10)

![Structure of 4,5,6-Trihydroxy-2-methylcyclohex-2-enone (10)](image)

The cyclohexenone 9 (142 mg, 0.33 mmol) was dissolved in anhydrous CH$_2$Cl$_2$ under argon and anhydrous FeCl$_3$ (162 mg, 3 equiv) was added at 0°C. After 15 min the reaction was complete as indicated by TLC analysis and quenched with H$_2$O (5mL). It was stirred for 1 min and then extracted with AcOEt (3x30mL). The organic layers were dried over Na$_2$SO$_4$, filtered, and the solvent was removed under pressure. This crude reaction mixture was purified by flash silica gel column chromatography (AcOEt as eluent) to afford 4-epiGabosine A as a white solid 28 mg (55% yield) [Rf: 0.2; AcOEt/MeOH: 8/2].

Mp:100-102°C

1H NMR (300 MHz, MeOD): δ = 1.82 (t, J = 1.8Hz, 3H), 3.32 (broad s, 3H), 3.54 (dd, J = 10.9, 8.2Hz, 1H), 4.00 (d, J = 10.9Hz, 1H), 4.30 (ddq, J = 8.2, 3.1Hz, 1H), 6.67 (dq, J = 3.2Hz, 1.6Hz, 1H).

13C NMR (75 MHz, MeOD): δ = 15.2, 72.6, 78.0, 80.0, 134.8, 147.9, 200.1.

HRMS m/z Calculated for [M +Na]$^+$ C$_7$H$_{10}$O$_4$Na: 181.0471 found 181.0474. [α]$^{20}_D$ + 47.3 (c 0.3, MeOH).

II.14 (2S,3R,4S,6R)-2,3,4-tris(benzyloxy)-6-methylcyclohexanone (11)

![Structure of 2,3,4-tris(benzyloxy)-6-methylcyclohexanone (11)](image)

To a solution of 9 (100 mg, 0.232 mmol) in absolute ethanol (2.5 mL) was added palladium on activated carbon (7 mg). The flask was flushed with hydrogen three times. The reaction mixture was then stirred vigorously under an atmosphere of hydrogen for 3 h. The reaction mixture was filtered through a pad of silica gel and concentrated under vacuum to afford cyclohexanone 11 as a white solid (95 mg, 95%).

Mp:74-76°C
\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta = 1.10\) (d, \(J = 6.5\)Hz, 3H), 1.34 (dt, \(J = 11.6, 13.5\)Hz, 1H), 2.23 (dt, \(J = 13.1, 5.0\)Hz, 1H), 2.39 (ddq, \(J = 5.5, 12.3, 6.5\)Hz, 1H), 3.67 (dd, \(J = 9.6, 9.1\)Hz, 1H), 3.85 (ddd, \(J = 4.8, 8.9, 11.5\)Hz, 1H), 4.08 (dd, \(J = 9.8, 1.3\)Hz, 1H), 4.55 (d, \(J = 11.4\)Hz, 1H), 4.72 (d, \(J = 11.6\)Hz, 1H), 4.76 (d, \(J = 11.6\)Hz, 1H), 4.84 (d, \(J = 10.7\)Hz, 1H), 4.91 (d, \(J = 11.0\)Hz, 2H), 7.28-7.42 (m, 15H).

\(^1\)C NMR (125 MHz, CDCl\(_3\)): \(\delta = 13.4, 35.2, 39.1, 72.9, 73.5, 75.9, 78.8, 85.8, 86.2, 127.67, 127.7, 127.8, 128.1, 128.2, 128.35, 128.4, 128.5, 137.8, 138.4, 138.5, 206.8.

\([\alpha]^{20}_D -39.8\) (c 0.46, CHCl\(_3\)).

HRMS \(m/z\) Calculated for [M+Na\(^+\)]. \(C_{28}H_{30}O_4Na: 453.2042\) found 453.2038.

II.15 (2S,3R,4S,6R)-2,3,4-Trihydroxy-6-methylcyclohexanone (12)

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{HO} & \quad \text{OH} \\
\end{align*}
\]

To a solution of \(9\) (200 mg, 0.467 mmol) in absolute ethanol (2.5 mL) was added palladium on activated carbon (7 mg). The flask was flushed with hydrogen three times and the reaction mixture was kept under hydrogen for 3 days at RT. When analytical TLC showed the absence of starting material \(9\) and reduced cyclohexanone \(11\), the reaction mixture was filtered through a pad of silica gel. The filtrate was concentrated to afford pure target molecule \(12\) as a white solid (67mg, 90%).

Mp: 108-110°C

\(^1\)H NMR (300 MHz, MeOD): \(\delta = 0.96\) (d, \(J = 6.5\)Hz, 3H), 1.18 (dt, \(J = 13.2, 11.5, \)Hz, 1H), 2.07 (dt, \(J = 13.0, 5.0\)Hz, 1H), 2.56 (ddq, \(J = 5.5, 10.3, 6.5\)Hz, 1H), 3.15 (dd, \(J = 9.3, 9.7\)Hz, 1H), 3.79 (ddd, \(J = 4.7, 9.0, 11.5\)Hz, 1H), 3.98 (dd, 10.0, 1.4Hz).

\(^1\)C NMR (75 MHz, MeOD): \(\delta = 13.9, 39.0, 40.2, 71.8, 79.4, 81.4, 210.3.

\([\alpha]^{20}_D -107.8\) (c 0.4, CHCl\(_3\)).

HRMS \(m/z\) Calculated for [M\(^+\)]. \(C_{7}H_{12}O_4: 160.0735\) found 160.0743.