Electronic Supplementary information for the paper

A Generic Route to Fluoroalkyl-containing Phosphanes†

Alan K. Brisdon,*^a Christopher J. Herbert^a

^aSchool of Chemistry The University of Manchester Oxford Road Manchester UK M13 9PL

Materials and Methods:

All syntheses were carried out using Schlenk techniques under an inert (N₂) atmosphere, unless otherwise stated. Air/moisture sensitive compounds were handled under an argon atmosphere in a dry box (Belle Technology, UK) fitted with a recirculatory drying column. Low temperature reactions were carried out in an ethanol bath in a silvered Dewar vessel equiped with a closed-cycle 2-stage dip chiller unit (L.P. Technology, Leeds, UK).

Diethyl ether and THF (Fisher) were dried over sodium/benzophenone for *ca*. 1 day and then freshly distilled prior to use. Hexane (Fisher) was dried over sodium wire for *ca*. 1 day and then freshly distilled prior to use. Solvents were thoroughly degassed prior to use. CF_3I , C_2F_5I , *i*- C_3F_7 , *s*- C_4F_9I , *t*- C_4F_9I , $C_6F_{11}I$ (all Apollo Scientific), Ph₂PH (Strem), Li (3.2 mm diam. wire), MeLi (1.6 M in Et₂O) (all Acros), PPh₃, Me₃SiCl and CDCl₃, (all Aldrich) were used as supplied after verification of their purity by spectroscopic methods. Ph₂PSiMe₃ was synthesized based on literature methods.¹

NMR data was recorded as CDCl₃ solutions in 5mm tubes unless otherwise stated. ³¹P{¹H}, ³¹P, and ¹H NMR spectra were recorded on either Bruker Avance III 400 MHz or Bruker DPX200 spectrometers operating at 161.967 or 81.013 MHz (³¹P), and 400.130 or 200.131 MHz (¹H) respectively. Quoted chemical shift values are given using the high frequency positive convention and are referenced to external 85% H₃PO₄ and either SiMe₄ or residual proton signals from the solvent respectively. ¹⁹F, ¹³C NMR spectra were recorded on a Bruker AVANCE III 400 MHz spectrometer operating at 376.461 and 100.622 MHz and referenced to either external CFCl₃. SiMe₄, or solvent signals. ²⁹Si{¹H} NMR spectra were recorded on a Varian Inova 400 operating at 79.5 MHz and referenced with respect to external SiMe₄. Coupling constants are given in Hz and are measured directly from spectra, or obtained by modelling and iterative fitting of the NMR data using the SPINWORKS program.² Elemental analyses were performed by The School of Chemistry's microanalysis section.

Supplementary Material (ESI) for Chemical Communications This journal is $\textcircled{\mbox{\scriptsize C}}$ The Royal Society of Chemistry 2009

The X-ray crystallography measurements were recorded on a Bruker-Nonius Kappa CCD machine using MoK α radiation (λ = 0.71073 Å) at 150 K. Data were corrected for Lorentz, polarisation and absorption using the multi-scan method. The X-ray structural data was solved by direct methods and refined by Full Matrix Least Squares using SHELXL.³ Hydrogen atoms were placed in idealized locations all other atoms were refined isotropically.

	4
Formula	$C_{15}H_{10}F_7P$
Formula Weight	354.12
Crystal System	Monoclinic
Space Group	$P2_{1}/c$
<i>a</i> (Å)	8.9091(2)
<i>b</i> (Å)	26.2430(6)
<i>c</i> (Å)	6.3928(1)
α (°)	90
β (°)	99.406(1)
γ (°)	90
$V(\text{\AA}^3)$	1474.55(5)
Z	4
<i>T</i> / K	150
$D_{\rm c} ({\rm g}{\rm cm}^{-1})$	1.595
Crystal Size (mm)	0.15 x 0.15 x 0.15
μ (mm ⁻¹)	0.257
2\O range (°)	3.1→25.5
Total reflections	2736
Unique reflections (R _{int)}	2736 (0.047)
Obs. reflections $[I>2\sigma(I)]$	1979
Parameters	208
Final R indices	$R_1 0.0796$
<i>I</i> >2σ(<i>I</i>)]	$wR_2 0.2488$
Max., min. $\Delta \rho$ (eÅ ⁻³)	-0.42, 0.92
Goodness of fit on F^2	1.08

Table S1: Crystallographic Data for 4

Preparation of Ph₂PSiMe₃,

In a dried 3-necked round-bottomed flask maintained under a nitrogen atmosphere was placed thf (200 cm^3) into which Ph₃P (65.8g, 0.25 mol) was dissolved. Lithium wire (6.18 g, 0.90 mol) was added and the solution stirred rapidly for 24 hours. The excess of lithium wire was removed from the deep red solution which was cooled to 0 °C. Me₃SiCl (65.6 cm³, 0.51 mol) was added slowly and the solution left to stir for 2 hours. The volatiles were removed under vacuum and hexane (200 cm³) was added. The solution was filtered and the solvent removed under vacuum to give a pale yellow liquid which was vacuum distilled twice (154 °C, 5 mmHg) to yield pure Ph₂PSiMe₃ (43.6 g, 68%).

Preparation of *i*-Pr₂PSiMe₃

A dried 3-necked flask was charged with thf (100 cm³) under nitrogen, *i*-Pr₂PCl (10.4 cm³, 65 mmol) with Me₃SiCl (8.6 cm³, 67 mmol) and the solution cooled to 0°C. Lithium wire (1.00 g, 144 mmol) was added and the mixture stirred and allowed to warm to room temperature over 24 h. The mixture was concentrated and filtered through Celite. The volatiles were removed under vacuum and the residue distilled (34-35 °C, 5 mmHg) to yield the title compound as a clear pyrophoric liquid (5.7g, 46%).

Preparation of PhMePSiMe₃

Using a similar protocol Ph₂PMe (1.0 cm³, 1.08 g, 5.4 mmol) was dissolved in thf (30 cm³). Lithium wire (0.185 g, 27 mmol) was added, and left to stir for 24 h at room temperature. The excess of lithium was removed, and the mixture cooled to 0 °C. Me₃SiCl (1.95g, 10.8 mmol) was added slowly. This was allowed to stir and warm to room temperature over a period of 2 h, then filtered through Celite and the volatiles were removed. The resulting pale yellow liquid was used without further purification.

General Procedure for non-optimised NMR Scale Experiments 1-9.

 Ph_2PSiMe_3 (0.1 cm³, 0.39 mmol) was dissolved in CDCl₃ (0.75 cm³) in an NMR tube in a glove box. One equivalent of perfluoroalkyl iodide was then added, and the tube sealed. Spectra were recorded after 30 minutes and periodically until no further change in the spectra could be observed. The products were identified on the basis of their multinuclear NMR spectra. A repeat of all reactions were undertaken in the presence of 0.25 cm³ of an internal NMR standard which was prepared from $CH_2FCH_2CH_2F$ (0.32 g, 4.1 mmol) made upto 5 cm³ with CDCl₃ in a volumetric flask.

Ph₂PCF₃, 1

Using the procedure set out above and CF₃I (0.03 cm³, 0.4 mmol) a slow reaction was observed. After a period of 6 days no further change to the NMR spectra were observed: ³¹P{¹H} NMR: δ 2.5 ppm (q, ²*J*_{PF} = 73.8 Hz) ¹⁹F NMR: δ -55.1 ppm (d, ²*J*_{PF} = 73.9 Hz. ¹H NMR: δ 7.4-7.7 (m). The identity of the product was verified by comparison with published data. ³¹P{¹H} NMR (CDCl₃): δ 2.8 ppm [²*J*(PF) = 73.5 Hz], ¹⁹F NMR: δ -55.0 ppm [*J* = 73 Hz].⁴

Ph₂PC₂F₅, 2

Using the procedure described above and CF₃CF₂I (0.05 cm³, 0.4 mmol) a slow reaction was observed. After a period of 5 days no further change to the NMR spectra were observed: ³¹P{¹H} NMR: δ -1.9 ppm (tq, ²*J*_{PF} = 56.8 Hz, ³*J*_{PF} = 16.7 Hz). ¹⁹F NMR: δ -113.0 ppm (2F, dq, ²*J*_{PF} = 56.8 Hz, ³*J*_{FF} = 3.0, *CF*₂), -81.0 ppm (3F, dt, ³*J*_{PF} = 16.7 Hz, ³*J*_{FF} = 3.0 Hz, *CF*₃). ¹H NMR: δ 7.4-7.7 (m). The identity of the product was verified by comparison with published data. ³¹P{¹H} NMR (C₆D₆): δ -1.4 ppm [*J* = 58, 17], ¹⁹F NMR: δ -80.7 ppm [*J* = 16.5, 3.1], -112.6 [*J* = 57.0, 3.1 Hz].⁵

Ph₂PC₈F₁₇, 3

Using the procedure described above $CF_3(CF_2)_7I$ (0.22 g, 0.4 mmol) was reacted with Ph_2PSiMe_3 when a slow reaction ensued. After a period of 6 days no further changes to the NMR spectra were observed:

³¹P{¹H} NMR: δ 1.1 ppm (m, ²*J*_{PF} = 56.0 Hz). ¹⁹F NMR: δ -81.7 (3F, t, *J*_{FF} = 7.8 Hz, *CF*₃), -109.4 (2F, dt, ²*J*_{PF} = 56.0 Hz, *J*_{FF} = 13.3 Hz, PC*F*₂), -122.1 (2F, m), -122.6 (6F, m), -123.5 (2F, m), -127.0 (2F, m). ¹H NMR: δ 7.4-7.7 (m).

Ph₂PCF(CF₃)₂, 4

Reaction with $(CF_3)_2CFI$ (0.06 cm³, 0.4 mmol) as described above, resulted in a rapid reaction, which was complete within 30 minutes according to NMR spectroscopy. For the relevant NMR data see later.

Ph₂PCF(CF₃)(CF₂CF₃), 5

Using the procedure set out above and s-C₄F₉I (0.07 cm³, 0.4 mmol) a rapid reaction (complete within 30 minutes) was observed to occur.

³¹P{¹H} NMR: δ 3.7 ppm (dddqq, ²*J*_{PFb} = 78.0 Hz, ³*J*_{PFd} = 44.6 Hz, ³*J*_{PFc} = 33.2 Hz, ³*J*_{PFa} = 16.9 Hz, ⁴*J*_{PFe} = 12.0 Hz). ¹⁹F NMR: δ_{Fa} -67.8 ppm (3F, ddddq, ³*J*_{PFa} = 16.9 Hz, ³*J*_{FaFb} = 12.1 Hz, ⁴*J*_{FaFc} = 12.3 Hz, ⁴*J*_{FaFd} = 5.5 Hz, ⁵*J*_{FaFe} = 8.6 Hz), δ_{Fe} -80.0 (3F, ddddq, ⁴*J*_{PFe} = 12.0 Hz, ⁴*J*_{FeFa} = 8.6 Hz, ⁴*J*_{FeFb} = 12.0 Hz, ³*J*_{FeFc} = 0.1 Hz, ³*J*_{FeFd} = 0.6 Hz), δ_{Fe} -110.6 ppm (1F, ddqdq, ¹*J*_{FeFd} = 295.6 Hz, ³*J*_{PFc} = 33.2 Hz, ${}^{4}J_{FcFa} = 12.3 \text{ Hz}, {}^{3}J_{FcFb} = 12.0 \text{ Hz}, {}^{3}J_{FcFe} = 0.1 \text{ Hz}) \delta_{Fd} - 114.5 \text{ ppm} (1\text{F}, \text{dddqq}, {}^{1}J_{FdFc} = 295.6 \text{ Hz}, {}^{3}J_{FdP} = 44.6 \text{ Hz}, {}^{3}J_{FdFb} = 11.9 \text{ Hz}, {}^{4}J_{FdFa} = 5.5 \text{ Hz}, {}^{3}J_{FdFe} = 0.6 \text{ Hz}), \delta_{Fb} - 183.4 \text{ ppm} (1\text{F}, \text{dqdqd}, {}^{2}J_{FbP} = 78.0 \text{ Hz}, {}^{3}J_{FbFa} = 12.1 \text{ Hz}, {}^{3}J_{FbFc} = 12.0 \text{ Hz}, {}^{4}J_{FbFe} = 12.0, {}^{3}J_{FbFd} = 11.9 \text{ Hz}). {}^{1}\text{H} \text{ NMR: } \delta 7.4-7.7 \text{ (m)}.$

Ph₂P(c-C₆F₁₁), 6

Using the procedure described above and c-C₆F₁₁I (0.16 g, 0.4 mmol) a rapid reaction was observed. ³¹P{¹H} NMR: δ -3.4 ppm (td, 3JPF2ax = 84.0 Hz, 2JPF1 = 68.0 Hz). Fluorine NMR data are assigned based on that previously reported for mono-substituted perfluorocyclohexyl systems.⁶ ¹⁹F NMR: δ -110.5 (2F, ³*J*_{PF} = 84.0 Hz,²*J*_{FF} = 298.3 Hz, 2a,6a), -122.6 (2F, d, ²*J*_{FF} = 280.0 Hz, 3a,5a), -124.4 ppm (1F, d, ²*J*_{FF} = 288.8 Hz, 4a) -124.5 (2F, d, ²*J*_{FF} = 298.3 Hz, 2e,6e), -138.2 (2F, d, ²*J*_{FF} = 280.0 Hz, 3e,5e), -142.0 (1F, d, ²*J*_{FF} = 285.5 Hz, 4e), and -185.8 (1F, dm, ²*J*_{PF} = 68.0 Hz, 1a).

Ph₂P(t-C₄F₉), 7

Using the procedure set out above and *t*-C₄F₉I (0.14 g, 0.45 mmol) a rapid reaction was observed. ³¹P{¹H} NMR: δ 15.2 ppm (dectet, ³*J*_{PF} = 12.3 Hz), ¹⁹F NMR: δ –60.0 ppm (d, ³*J*_{PF} = 12.2 Hz). ¹H NMR: δ 7.4-7.7 (m). Some decomposition was observed to give (CF₃)₃CH and (CF₃)₂C=F₂ (CARE: perfluoroisobutene is highly toxic).⁷

i-Pr₂PC₂F₅ (8).

Reaction of CF_3CF_2I (0.05 cm³, 0.4 mmol) with *i*-Pr₂PSiMe₃ in an NMR tube, as described above, resulted in a reaction which was complete after 2 hours.

³¹P{¹H} NMR: δ 24.5 (tq, ²*J*_{PF} = 41.7, ³*J*_{PF} = 14.8 Hz) ¹⁹F NMR: δ -82.4 (dt, ³*J*_{PF} = 14.8, ³*J*_{PF} = 2.9 Hz), -111.7 (dq, ²*J*_{PF} = 41.7, ³*J*_{PF} = 2.9 Hz). ¹H NMR: δ 1.16 (6H, m, *CH*₃), 2.2 (1H, dsept, ²*J*_{PH} = 2.4, ³*J*_{HH} = 7.1 Hz, *CH*).

PhMePCF(CF₃)₂ (9).

Reaction of $(CF_3)_2$ CFI (0.06 cm³, 0.4 mmol) with PhMePSiMe₃ in an NMR tube, as outlined above, resulted in a rapid reaction, which was complete within 30 minutes.

³¹P {¹H} NMR: δ -12.0 (dsept, ²*J*_{PF} = 61.1, ³*J*_{PF} = 16.4 Hz) ¹⁹F NMR: δ -70.2 [3F, ddq, ²*J*_{PF} = 16.4, ³*J*_{FF} = 11.2, ⁴*J*_{FF} = 9.3 Hz, CF₃], -71.2 [3F, ddqq, ²*J*_{PF} = 16.4, ³*J*_{FF} = 11.2, ⁴*J*_{FF} = 9.3, ⁵*J*_{FH} = 1.5 Hz, CF₃'], -190.3 [1F, dsept, ²*J*PF = 61.1, ³*J*_{FF} = 11.0, CF] ¹H NMR: δ 7.28-7.40 (6H, m), 1.63 (3H, d, ²*J*_{PH} = 6.0 Hz, CH₃).

Synthesis of Ph₂PCF(CF₃)₂, 4

A dried Schlenk vessel was charged with Ph₂PSiMe₃ (2.2 cm³, 8.5 mmol) and hexane (20 cm³). This

was cooled to *ca*. -30°C and (CF₃)₂CFI (1.2 cm³, 8.5 mmol) added slowly. The solution was allowed to warm to 0°C and stirred overnight. The solution was recooled to -20°C, and MeLi (1.6 M in Et₂O, 5.2 cm³, 8.5 mmol) was added slowly. The solution was then allowed to stir for *ca*. 30 mins, and warmed to room temperature. The solution was filtered, and the volatiles removed under vacuum. The resulting yellowish solid was redissolved in hexane (15 cm³) and DCM (5 cm³), and filtered. Removal of the solvents *in vacuo* afforded **1** as a white solid (2.28 g, 75 %). C₁₅F₇H₁₀P requires: C 50.84, H 2.85, P 8.75%, found: C 50.88, H 2.71, P 8.04%. ³¹P {¹H} NMR: δ -0.8 ppm (dsept, ²*J*_{PF} = 74.0 Hz, ³*J*_{PF} = 18.0 Hz), ¹⁹F NMR: δ -69.6 ppm (6F, dd, ³*J*_{PF} = 18.0 Hz, ³*J*_{FF} = 11.9 Hz, CF₃), -184.9 ppm (1F, dsept, ²*J*_{PF} = 74.0 Hz, ³*J*_{FF} = 11.9 Hz, CF₂), ¹³C {¹H} NMR: δ 135.8 ppm (d, ²*J*_{PC} = 26.0 Hz, *ortho*), 131.2 ppm (s, *para*), 130.0 ppm (dd, ¹*J*_{PC} = 12.3 Hz, ³*J*_{CF} = 6.8 Hz, *ipso*), 128.9 (d, ³*J*_{PC} = 10.3 Hz, *meta*), ¹H NMR: δ 7.24-7.45 ppm (6H, m), 7.65-7.85 (4H, m).

References

- 1.
- 2. Spinworks, version 2.55, Kirk Marat, University of Manitoba, 2006.
- 3. G. M. Sheldrick, *Acta Crystallographica Section A*, 2008, **64**, 112-122.
- 4. P. Eisenberger, I. Kieltsch, N. Armanio and A. Togni Chem. Commun., 2008, 1575
- 5. R. G. Peters, B. L. Bennett, R. C. Schnabel and D. M. Roddick, *Inorg. Chem.*, 1997, **36**, 5962
- 6. G. Gurato, L. Cavalli, G. G. Troilo, Org. Mag. Res., 1975, 7, 532.
- 7. A. Probst, K. Raab, K. Ulm and K. von Werner, J. Fluorine Chem., 1987, 37, 223.

Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2009

 $^{31}P\{^{1}H\}$ NMR spectrum of Ph₂PCF(CF₃)₂, 4

Expansion of ³¹P{¹H} NMR spectrum of Ph₂PCF(CF₃)₂, 4

¹⁹F NMR spectrum of Ph₂PCF(CF₃)₂, **4**

Expansions of signals from the ¹⁹F NMR spectrum of Ph₂PCF(CF₃)₂, **4**

Supplementary Material (ESI) for Chemical Communications This journal is o The Royal Society of Chemistry 2009

³¹P{¹H} NMR spectrum of $Ph_2P(s-C_4F_9)$ 5

Expansion of the peak at δ + 3.7 (bottom) and simulation (top) in the ³¹P{¹H} NMR spectrum of Ph₂P(*s*-C₄F₉), **5**

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

¹⁹F NMR spectrum of $Ph_2P(s-C_4F_9)$, **5**

Expansions of CF_3 and CF_3CF_2 signals (simulated (top) and experimental (bottom)) in the ¹⁹F NMR spectrum for 5

Expansions of diastereotopic fluorine atom signals from the ¹⁹F NMR spectrum of $Ph_2P(s-C_4F_9)$, **5** (simulated = top, expt = bottom)

Expansion of the CF signal in the ¹⁹F NMR spectrum of $Ph_2P(s-C_4F_9)$, **5** (simulated = top, expt = bottom)

M-183.10 -183.14 -183.18 -183.22 -183.26 -183.30 -183.34 -183.38 -183.42 -183.46 -183.50 -183.54 -183.58 -183.66 -183.66 -183.7

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

 $^{31}P{^{1}H}$ NMR spectrum of Ph₂P(*cyc*-C₆F₁₁), **6**

Ph ₂ PI					
1 H ₂ 1 1					
**************************************		i na katala na jeda na na katala na katala na na katala na katala na katala na katala na katala na katala na k Na katala na propilara pana na katala na k	n a stal han stal hidden of a stal had to be a stal stal stal stal stal stal stal st	nd also also al casa al data al anno 11 ferrara a sa al data terdera a seb terdera mena data y Angana menangkan penangkan penangkan penangkan penangkan penangkan penangkan penangkan penangkan penangkan pena	ant soon alle services is himen this international sublicity of the discussion of the discussion of the service And services in the service of the
M 120.0 100.0 80.0 60.0 40.0 20.0	0.0 -20.0 -40.0	-60.0 -80.0	-100.0 -120.0 -1	140.0 -160.0 -180.0	-200.0 -220.0 -240.0

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

¹⁹F NMR spectrum of $Ph_2P(cyc-C_6F_{11})$, **6**

 $^{31}P{^{1}H}$ NMR spectrum of reaction between Ph₂PSiMe₃ and *tert*-C₄F₉I, 7

Expansion of signal at δ +15.2 ppm in the spectrum shown above, 7

¹⁹F NMR spectrum of the $Ph_2P(t-C_4F_9)$, 7

Expansion of peak at $\delta-60.0$ in the ^{19}F NMR spectrum shown above, 7

 ^{31}P {¹H} NMR spectrum of $^{i}Pr_2PC_2F_5$, **8**


```
Expansion of signal at \delta + 24.4 ppm in the spectrum of 8 (above)
```


¹⁹F NMR spectrum of ⁱPr₂PC₂F₅, **8**

CF₂ signal

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2009

³¹P{¹H} NMR spectrum of PhMePCF(CF₃)₂, **9**

Expansion of the signal at δ -12.0 in the ³¹P {¹H} NMR spectrum of PhMePCF(CF₃)₂, **9**

¹⁹F NMR spectrum of PhMePCF(CF₃)₂, **9**

Expansion of the signals for CF_3 and CF_3' in the ¹⁹F NMR spectrum of PhMePCF(CF_3)₂, **9**

