Construction of Well-Defined Multifunctional Dendrimers Using a Trifunctional Core

Cátia Ornelas and Marcus Weck*

Molecular Design Institute and Department of Chemistry, New York University, New York, NY, 10003-6688

Supplementary Information

Experimental Procedures, Spectroscopic Data and ¹H NMR and Mass Spectra.

General data	-page 2
Experimental details and characterization data	
of all compounds	pages 2-16
Mass spectra	pages 17-23
¹ H NMR spectra	- pages 24-31

General data.

Anhydrous DMF was purchased from Acros, PEG linker 5 from VWR, and dendrons aminotriester and nitrotriester from Frontier Scientific. All compounds were used as received. Compounds 1^{1} , 3^{1} , 4^{1} , 8^{2} and 16^{3} were synthesized according to literature procedures. Dialysis membranes were purchased from SpectrumLabs and used as received.

NMR spectroscopy. ¹H NMR spectra were recorded at 25°C on a Bruker AC 400 (400 MHz) spectrometer. ¹³C NMR spectra were obtained at 100.0 MHz on a Bruker AC 400 spectrometer. All chemical shifts are reported in parts per million (ppm) with reference to solvent residual peaks.

ESI Mass Spectrometry. The ESI mass spectra were obtained in an Agilent 1100 Series Capillary LCMSD Trap XCT Spectrometer.

MALDI-TOF Mass Spectrometry. MALDI-TOF mass spectra were recorded with a Bruker OmniFLEX MALDI-TOF MS Spectrometer.

Synthesis of 6

Dendron **4** (0.460 g, 0.32 mmol), PEG linker **5** (0.200 g, 0.52 mmol) and HATU (0.150 g, 0.41 mmol) were dissolved in 8 mL of dry DMF. Triethylamine (0.1 mL, 0.72 mmol) was added with a syringe and the solution was stirred at room temperature for 16h. The solvent was removed under vacuum and

¹ SI 1. a) G. R. Newkome; R. K. Behera, C. N. Moorefield, G. R. Baker, *J. Org. Chem.* **1991**, *56*, 7162-7167; b) G. R. Newkome, A. Nayak, R. K. Behera, C. N. Moorefield, G. R. Baker, *J. Org. Chem.* **1992**, *57*, 358-362; c) Michael Brettreich, Andreas Hirsch, *Synlett* **1998**, 1396-1398.

² O. E. Vercillo, C. K. Z. Andrade, L. A. Wessjohann, Org. Lett. 2008, 10, 205-208.

³ P.-C. Lin, S.-H. Ueng, M.-C. Tseng, J.-L. Ko, K.-T. Huang, S.-C. Yu, A. K. Adak, Y.-J. Chen, C.-C. Lin. Angew. Chem., Int. Ed., **2006**, *45*, 4286-4290.

the product was purified by column chromatography using silica gel and ethyl acetate as eluent. The final product was obtained as a white powder in 92% yield (0.532 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} vs. TMS): 7.80 (d, J = 7.5 Hz, arom. CH fmoc, 2H), 7.66 (d, J = 7.4Hz, arom. CH fmoc, 2H), 7.36 (t, J = 7.4 Hz, arom. CH fmoc, 2H), 7.29 (t, J = 7.4 Hz, arom. CH fmoc, 2H), 7.33 (s, CONH, 5H), 4.36 (d, J = 6.8 Hz, CH₂OCONH, 2H), 4.22 (t, J = 6.7 Hz, CHCH₂OCONH, 1H), 3.92 (s, OCH₂CONH, 2H), 3.68 (s, OCH₂CH₂O, 4H), 3.60 (t, J = 5.4 Hz, OCH₂CH₂NHfmoc, 2H), 3.34 (s, OCH₂CH₂NHfmoc, 2H), 2.17 (m, CH₂CH₂COO, 24H), 1.93 (m, CH₂CH₂COO, 24H), 1.43 (s, COOC(CH₃)₃, 81H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} vs. TMS): 175.3 (CONH), 174.5 (COOtBu), 158.9 (NHCOOCH₂), 145.5 and 142.7 (arom. C_a), 128.9, 128.3, 126.4 and 121.1 (arom. CH), 81.7 (COOC(CH₃)₃), 72.3, 71.5, 71.2 and 71.1 (CH₂OCH₂), 67.9 (NHC_q), 58.9 41.8 $(OOCNHCH_2CH_2O), 32.4$ (NHCOOCH₂), $(CH_2CH_2CONH),$ 32.1 (CH₂CH₂CONH), 30.8 (CH₂CH₂COOtBu), 30.6 (CH₂CH₂COOtBu), 28.6 (COOC(CH₃)₃). MS-ESI $[MNa^+]$ m/z calcd for C₉₇H₁₅₅N₅O₂₆Na: 1829.1, found 1827.1. Anal. calcd. for C₉₇H₁₅₅N₅O₂₆: C 64.46, H 8.64; found C 64.19, H 8.53.

Synthesis of 7

Dendron **6** (0.174 g, 0.096 mmol) was dissolved in 20 mL of formic acid and 2 mL of water were added. The solution was stirred at room temperature for 16h. The solution was evaporated to dryness and the product was washed three times with ethylic ether. The final product was obtained as a white solid in 97% yield (0.121 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.09 (s, CON*H*, 5H), 7.79 (d, *J* = 7.5 Hz, arom. *CH* fmoc, 2H), 7.64 (d, *J* = 7.4 Hz, arom. *CH* fmoc, 2H), 7.38 (t, *J* = 7.4 Hz, arom. *CH* fmoc, 2H), 7.31 (t, *J* = 7.4 Hz, arom. *CH* fmoc, 2H), 4.38 (d, *J* = 6.8 Hz, *CH*₂OCONH, 2H), 4.21 (t, *J* = 6.7 Hz, *CHC*H₂OCONH, 1H), 3.93 (s, OCH₂CONH, 2H), 3.67 (s, OCH₂CH₂O, 4H), 3.58 (t, *J* = 5.4 Hz,

OC H_2 CH₂NHfmoc, 2H), 3.33 (m, OCH₂C H_2 NHfmoc, 2H), 2.27 (m, CH₂C H_2 COOH, 18H), 2.17 (m, CH₂C H_2 CONH, 6H), 2.02 (m, C H_2 CH₂COO, 24H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} vs. TMS): 177.2 (COOH), 175.5 (CONH), 159.1 (NHCOOCH₂), 145.5 and 142.7 (arom. C_q), 128.9, 128.3, 126.3 and 121.1 (arom. CH), 72.3, 71.5, 71.2 and 71.1 (CH₂OCH₂), 67.8 (NHCOOCH₂), 58.7 (NHC_q), 41.7 (OOCNHCH₂CH₂CO), 32.2 (CH₂C H_2 CONH), 31.9 (C H_2 CH₂CONH), 30.6 (CH₂C H_2 COOH), 29.4 (C H_2 CH₂COOH). MS-ESI [MNa⁺] m/z calcd for C₆₁H₈₃N₅O₂₆Na: 1324.5, found 1324.4. Anal. calcd. for C₆₁H₈₃N₅O₂₆: C 56.26, H 6.42; found C 55.87, H 6.33.

Synthesis of 9

Dendron 7 (0.058 g, 0.045 mmol) and HATU (0.187 g, 0.53 mmol) were dissolved in 6 mL of dry DMF. Triethylamine (0.15 mL, 1.1 mmol) and 3-aminopropyl azide 8 (0.080 g, 0.80 mmol) were successively added with a syringe and the solution was stirred at room temperature for 24h. The solvent was removed under vacuum and the product was purified by column chromatography using silica gel and CH_2Cl_2 /methanol (90/10) as eluent. The final product was obtained as a colorless waxy product in 92% yield (0.083 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 7.86 and 7.32 (s, CON*H*, 14H), 7.81 (d, *J* = 7.5 Hz, arom. *CH* fmoc, 2H), 7.67 (d, *J* = 7.4 Hz, arom. *CH* fmoc, 2H), 7.40 (t, *J* = 7.4 Hz, arom. *CH* fmoc, 2H), 7.33 (t, overlapped with singlet of CON*H*, arom. *CH* fmoc, 2H), 4.33 (d, *J* = 7.0 Hz, *CH*₂OCONH, 2H), 4.22 (t, *J* = 7.0 Hz, *CHC*H₂OCONH, 1H), 3.96 (s, OCH₂CONH, 2H), 3.70 and 3.68 (s, OCH₂CH₂O, 4H), 3.59 (t, *J* = 5.9 Hz, OCH₂CH₂NHfmoc, 2H), 3.34 (t, *J* = 6.7 Hz, OCH₂CH₂NHfmoc and CH₂N₃, 20H), 3.23 (t, *J* = 6.6 Hz, NHCH₂CH₂CH₂N₃, 18H), 2.17 (m, CH₂CH₂CONH, 24H), 1.99 (m, CH₂CH₂CONH, 24H), 1.74 (m, NHCH₂CH₂CH₂N₃, 18H). ¹³C NMR

(MeOD, 100 MHz, δ_{ppm} vs. TMS): 175.5 (CONH), 159.2 (NHCOOCH₂), 145.5 and 142.7 (arom. C_q), 128.9, 128.3, 126.3 and 121.2 (arom. CH), 72.3, 71.6, 71.2 and 71.1 (CH₂OCH₂), 67.7 (NHCOOCH₂), 58.9 (NHC_q), 50.3 (CH₂N₃), 41.7 (OOCNHCH₂CH₂O), 38.1 (NHCH₂CH₂CH₂CH₂N₃), 31.7 (CH₂CH₂CONH), 31.4 (CH₂CH₂CONH), 29.8 (NHCH₂CH₂CH₂N₃). MS-ESI [MH⁺] *m*/*z* calcd for C₈₈H₁₃₈N₄₁O₁₇: 2041.1, found 2042.2. Anal. calcd. for C₈₈H₁₃₇N₄₁O₁₇₆: C 51.78, H 6.76; found C 51.49, H 6.68.

Synthesis of 10

Dendron **9** (0.076 g, 0.037 mmol) was dissolved in 2 mL of DMF and 0.4 mL of piperidine was added. The solution was stirred at room temperature for 30 min. The solvent was removed and the product was purified by dialysis against water (3 x 1L) using a Spectra-Por MWCO 500-1000 dialysis membrane. The final product was obtained as a colorless waxy product in 98% yield (0.066 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 3.95 (s, OCH₂CONH, 2H), 3.77 (t, J = 5.0 Hz, OCH₂CH₂NH₂, 2H) 3.64 (s, OCH₂CH₂O, 4H), 3.34 (t, J = 6.7 Hz, CH₂N₃, 18H), 3.23 (t, J = 6.8 Hz, NHCH₂CH₂CH₂N₃, 18H), 2.19 (m, CH₂CH₂CONH, 24H), 2.00 (m, CH₂CH₂CONH, 24H), 1.74 (m, NHCH₂CH₂CH₂N₃, 18H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 175.6 (CONH), 72.1, 71.4, 71.2 and 70.3 (CH₂OCH₂), 59.3 (NHC_q), 50.2 (CH₂N₃), 41.6 (NH₂CH₂CH₂CH₂O), 38.0 (NHCH₂CH₂CH₂N₃), 31.7 (CH₂CH₂CONH), 31.4 (CH₂CH₂CONH), 29.8 (NHCH₂CH₂CH₂N₃). MS-ESI [MH⁺] *m*/*z* calcd for C₇₃H₁₂₈N₄₁O₁₅: 1819.0, found 1819.3. Anal. calcd. for C₇₃H₁₂₇N₄₁O₁₅: C 48.20, H 7.04; found C 47.92, H 6.96.

Synthesis of 12:

Dimethyl 5-aminoisophthalate (2.00 g, 9.56 mmol) was dissolved in 100 mL of dry methylene chloride. Triethylamine (3.05 mL, 28.7 mmol) and di-tert-butyl dicarbonate (4.39 mL, 19.1 mmol) were successively added and the solution was stirred at room temperature for 16h. Solvent was removed under vacuum giving a yellow solid. The product was purified by column chromatography using silica gel and hexane/ethyl acetate (80/20) as eluent. The final product was obtained as a white powder in 66% yield (1.95 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.30 (s, arom. *CH*, 2H), 8.23 (s, arom. *CH*, 1H), 3.93 (s, COOCH₃, 6H), 1.54 (s, C(CH₃)₃, 9H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 167.7 (COOCH₃), 155.1 (COOtBu), 141.9 (arom. *C*NH), 132.6 (arom. *C*COOCH₃), 125.2 and 124.4 (arom. *C*H), 81.6 (*C*(CH₃)₃), 53.1 (COOCH₃), 28.8 (C(*C*H₃)₃). MS-ESI [M⁻] *m*/*z* calcd for C₁₅H₁₈NO₆: 308.1, found 308.4. Anal. calcd. for C₁₅H₁₈NO₆: C 58.25, H 6.19; found C 58.47, H 6.29.

Synthesis of 13:

Product **12** (1.21 g, 3.91 mmol) was dissolved in 90 mL of methanol and an aqueous solution of sodium hydroxide (0.156 g, 3.91 mmol in 10 mL of water) was added. The solution was stirred at room temperature for 24h and the solvent was removed under vacuum. The product was purified by column chromatography using silica gel and ethyl acetate/MeOH (96/4) as eluent. The final product was obtained as a white powder in 77% yield (0.89 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.32, 8.29 and 8.25 (s, arom. *CH*, 3H), 3.93 (s, COOC*H*₃, 3H), 1.53 (s, C(*CH*₃)₃, 9H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 168.8 (COOCH₃), 167.7

(COOH), 155.0 (COOtBu), 141.6 (arom. CNH), 133.2 (arom. CCOOH), 132.3 (arom. CCOOCH₃), 125.5, 124.8 and 124.3 (arom. CH), 81.6 ($C(CH_3)_3$), 53.0 (COOCH₃), 28.8 ($C(CH_3)_3$). MS-ESI [M⁻] m/z calcd for C₁₄H₁₆NO₆: 294.1, found 293.8. Anal. calcd. for C₁₄H₁₇NO₆: C 56.94, H 5.80; found C 57.16, H 5.69.

Synthesis of 14:

Product **13** (0.200 g, 0.68 mmol) and HATU (0.283 g, 0.75 mmol) were dissolved in 12 mL of dry DMF. Propargylamine (0.065 mL, 1.02 mmol) and diisopropylethylamine (0.24 mL, 1.35 mmol) were added with a syringe and the solution was stirred at room temperature for 16h. The solvent was removed under vacuum and the product was purified by column chromatography using silica gel and CH₂Cl₂/MeOH (98/2) as eluent. The final product was obtained as a white powder in 98% yield (0.22 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.27 (s, arom. *CH*, 1H), 8.08 (s, arom. *CH*, 2H), 4.15 (d, J = 2.5 Hz, NHCH₂C=CH, 2H), 3.93 (s, COOCH₃, 3H), 2.61 (s, C=CH, 1H), 1.54 (s, C(CH₃)₃, 9H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 168.9 (COOCH₃), 167.8 (CONHCH₂), 155.2 (COOtBu), 141.8 (arom. *C*NH), 136.6 (arom. *C*CONH), 132.5 (arom. *C*COOCH₃), 123.4, 123.2 and 122.9 (arom. *C*H), 81.7 (*C*(CH₃)₃), 80.7 (*C*=CH), 72.3 (C=*C*H), 53.0 (COOCH₃), 30.2 (NHCH₂), 28.8 (C(*C*H₃)₃). MS-ESI [M(H₂O)⁺] *m*/*z* calcd for C₁₇H₂₂N₂O₆: 350.1, found 349.3. Anal. calcd. for C₁₇H₂₀N₂O₅: C 61.44, H 6.01; found C 61.23, H 6.16.

Synthesis of 15:

Product **14** (0.200 g, 0.60 mmol) was dissolved in 20 mL of methanol and an aqueous solution of sodium hydroxide (0.036 g, 0.90 mmol, in 1 mL of water) was added. The solution was stirred at

room temperature for 48h and the solvent was removed under vacuum. The product was purified by column chromatography using silica gel and $CH_2Cl_2/MeOH$ (80/20) as eluent. The final product was obtained as a beige powder in 87% yield (0.17 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.07 (s, arom. *CH*, 2H), 8.02 (s, arom. *CH*, 1H), 4.15 (d, J = 2.2 Hz, NHCH₂C=CH, 2H), 2.62 (s, C=CH, 1H), 1.52 (s, C(CH₃)₃, 9H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 169.7 (COOH and CONHCH₂), 155.2 (COOtBu), 141.0 (arom. *C*NH), 135.9 (arom. *C*CONH), 130.5 (arom. *C*COOH) 123.8, 123.2 and 120.8 (arom. *C*H), 81.2 (*C*(CH₃)₃), 81.0 (*C*=CH), 72.3 (C=CH), 30.1 (NHCH₂), 28.8 (C(CH₃)₃). MS-ESI [M⁻] *m*/*z* calcd for C₁₆H₁₇N₂O₅: 317.3, found 317.3. Anal. calcd. for C₁₆H₁₈N₂O₅: C 60.37, H 5.70; found C 60.07, H 5.61.

Synthesis of 17

Products 15 (0.088 g, 0.28 mmol) and 16 (0.085 g, 0.17mmol) were dissolved in 200 mL of $CH_2Cl_2/EtOH/H_2O$ (1:1:2) solvent mixture. Aqueous solutions of $CuSO_4.5H_2O$ (0.050 g, 0.20 mmol) and sodium ascorbate (0.079 g, 0.40 mmol) were successively added and the solution was stirred at room temperature for 24h. The solvent was removed under vacuum and the product was purified by reverse-phase column using methanol as eluent. The product was obtained as a yellow solid in 62% yield (0.085 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.10 (s, arom. *CH*, 2H), 8.05 (s, arom. *CH*, 1H), 7.84 (s, triazole *CH*, 1H), 7.51 (m, arom. *CH*, 1H), 7.31 (m, arom. *CH*, 1H), 6.98 (m, arom. *CH*, 2H), 6.69 (s, arom. *CH*, 2H), 6.20 (m, arom. *CH*, 2H), 4.64 (s, triazole-*CH*₂CH₂, 2H), 4.53 (s, NHC*H*₂-triazole, 2H), 3.49 (m, NHC*H*₂CH₂CH₂-triazole, 2H), 1.92 (m, NHCH₂CH₂CH₂-triazole, 2H), 1.51 (s, C(*CH*₃)₃, 9H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 182.7 (NH*C*=S), 173.8 (*C*OO), 169.7 (*C*OOH and *C*ONHCH₂), 158.5 (arom. *C*_qOH), 155.2 (*C*OOtBu), 142.3 and 123.2 (*C*H of triazole), 141.1 (arom. *C*NH), 141.6, 139.5, 130.5, 126.8 and 124.4 (arom. *C*_q of FITC), 135.9 (arom. *C*CONH),

132.4, 121.1 and 104.3 (arom. *C*H of FITC), 130.5 (arom. *C*COOH), 123.7, 123.1 and 120.6 (arom. *C*H of core), 81.2 (*C*(CH₃)₃), 57.6 (NH*C*H₂-triazole), 51.0 (NHCH₂CH₂CH₂-triazole), 38.9 (NH*C*H₂CH₂CH₂), 29.0 (NHCH₂CH₂CH₂), 28.8 (C(*C*H₃)₃). MS MALDI-TOF [MH⁺] m/z calcd for C₄₀H₃₈N₇O₁₀S: 808.1, found: 808.6. Anal. calcd. for C₄₀H₃₇N₇O₁₀S: C 59.47, H 4.62; found C 59.49, H 4.69.

Synthesis of 18

Product **17** (0.016 g, 0.018 mmol), dendron **10** (0.040 g, 0.022 mmol) and HATU (0.0084 g, 0.024 mmol) were dissolved in 5 mL of dry DMF and diisopropylethylamine (0.007 mL, 0.040 mmol) was added. The solution was stirred at room temperature for 24h. The solvent was removed under vacuum and the product was purified by dialysis against methanol (3 x 1L), using a Spectra-Por MWCO 2000 dialysis membrane. The product was obtained as a yellow waxy product in 72% yield (0.039 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 7.97 (s, arom. CH, 3H), 7.87 (s, triazole CH, 1H), 7.70 (s, CONH, 16H), 7.64 (d, *J* = 8.2 Hz, arom. CH, 1H), 7.43 (s, arom. CH, 1H), 7.29 (d, *J* = 8.2 Hz, arom. CH, 1H), 6.72 (s, arom. CH, 2H), 6.55 (d, *J* = 7.3 Hz, arom. CH, 2H), 4.64 (s, triazole-CH₂CH₂, 2H), 4.55 (s, NHCH₂-triazole, 2H), 3.97 (s, OCH₂CONH, 2H), 3.78 (t, *J* = 4.9 Hz, OCH₂CH₂NHCO, 2H), 3.66 (s, OCH₂CH₂O, 4H), 3.50 (t, *J* = 6.5 Hz, NHCH₂CH₂CH₂-triazole, 2H), 3.36 (t, *J* = 6.7 Hz, CH₂N₃, 18H), 3.25 (t, *J* = 6.8 Hz, NHCH₂CH₂CH₂N₃, 18H), 2.19 (m, CH₂CH₂CONH, 24H), 2.00 (m, CH₂CH₂CONH and NHCH₂CH₂CH₂-triazole, 26H), 1.76 (m, NHCH₂CH₂CH₂N₃, 18H), 1.52 (s, C(CH₃)₃, 9H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 182.7 (NHC=S), 175.6 (CONH), 169.7 (CONHCH₂), 158.5 (arom. *C_q*OH), 155.1 (COOtBu), 142.3 and 123.2 (CH of triazole), 141.2 (arom. CNH), 141.6, 139.5, 130.4, 126.6 and 124.5 (arom. *C_q* of FITC), 135.9 (arom. CCONH), 132.4, 121.1 and 104.3 (arom. CH of FITC), 123.7, 123.1 and 120.5 (arom. CH of core), 81.2 (*C*(CH₃)₃), 72.2, 71.5, 71.3 and 70.4 (CH₂OCH₂), 59.3 (NHC_q), 57.4 (NHCH₂-triazole), 51.0 (NHCH₂CH₂CH₂CH₂-triazole), 51.0 (NHCH₂CH₂CH₂CH₂-triazole), 51.0 (NHCH₂CH₂CH₂CH₂-triazole), 51.0 (NHCH₂CH₂CH₂-triazole), 51.0 (NHCH₂-triazole), 51.0 (NHCH₂-triazole), 51.0 (NHCH₂-triazole), 51.0 (

triazole), 50.3 (CH_2N_3), 41.6 ($NH_2CH_2CH_2O$), 38.8 ($NHCH_2CH_2CH_2$), 38.0 ($NHCH_2CH_2CH_2CH_2N_3$), 31.7 (CH_2CH_2CONH), 31.4 (CH_2CH_2CONH), 29.8 ($NHCH_2CH_2CH_2N_3$), 29.2 ($NHCH_2CH_2CH_2$), 28.8 ($C(CH_3)_3$). MS MALDI-TOF [MH^+] m/z calcd for $C_{113}H_{163}N_{48}O_{24}S$: 2608.3, found: 2609.6. Anal. calcd. for $C_{113}H_{162}N_{48}O_{24}S$: C 52.02, H 6.26; found C 51.83, H 6.15.

Synthesis of 19

Dendron **18** (0.030 g, 0.011 mmol) was dissolved in 20 mL of formic acid and 2 mL of water was added. The solution was stirred at room temperature for 16h. The solution was evaporated to dryness and the product was washed three times with ethylic ether. The final product was obtained as a yellow waxy product in 95% yield (0.027 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs*. TMS): 7.97 (s, arom. *CH*, 1H), 7.87 (s, triazole *CH*, 1H), 7.70 (s, CON*H*, 16H), 7.64 (d, *J* = 8.2 Hz, arom. *CH*, 1H), 7.43 (s, arom. *CH*, 3H), 7.29 (d, *J* = 8.1 Hz, arom. *CH*, 1H), 6.72 (s, arom. *CH*, 2H), 6.55 (s, arom. *CH*, 2H), 4.64 (s, triazole-*CH*₂CH₂, 2H), 4.55 (s, NHC*H*₂-triazole, 2H), 3.97 (s, OC*H*₂CONH, 2H), 3.78 (m, OC*H*₂CH₂NHCO, 2H), 3.66 (s, OC*H*₂C*H*₂O, 4H), 3.50 (m, NHC*H*₂CH₂CH₂-triazole, 2H), 3.36 (t, *J* = 6.7 Hz, *CH*₂N₃, 18H), 3.25 (t, *J* = 6.8 Hz, NHC*H*₂CH₂CH₂N₃, 18H), 2.19 (m, CH₂C*H*₂CONH, 24H), 2.00 (m, *CH*₂CH₂CONH and NHCH₂C*H*₂CH₂-triazole, 26H), 1.76 (m, NHCH₂C*H*₂CH₂N₃, 18H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs*. TMS): 182.7 (NH*C*=S), 175.6 (*C*ONH), 169.7 (*C*ONHCH₂), 158.5 (arom. *C*_qOH), 148.2 (arom. *C*NH), 142.3 and 123.2 (*C*H of triazole), 141.6, 139.5, 130.4, 126.6 and 124.5 (arom. *C*_q of FITC), 135.9 (arom. *C*CONH), 132.4, 121.1 and 104.3 (arom. *C*H of FITC), 116.0, 115.7 and 115.1 (arom. *C*H of core), 72.2, 71.5, 71.3 and 70.4 (*C*H₂OCH₂), 59.3 (NHC_q), 57.4 (NH*C*H₂-triazole), 51.0 (NHCH₂CH₂CH₂-triazole), 50.3 (*C*H₂N₃), 41.6 (NH₂CH₂CH₂ONH), 29.8 (NHCH₂CH₂CH₂CH₂N₃), 29.2

(NHCH₂CH₂CH₂). MS MALDI-TOF [MH⁺] m/z calcd for C₁₀₈H₁₅₅N₄₈O₂₂S: 2508.2, found: 2509.3. Anal. calcd. for C₁₀₈H₁₅₄N₄₈O₂₂S: C 51.71, H 6.19; found C 51.52, H 6.11.

Synthesis of 20

Dendron **4** (0.140 g, 0.097 mmol) was dissolved in 5 mL of pyridine and succinic anhydride (0.020 g, 0.194 mmol) was added. The solution was stirred at room temperature for 48h. The solvent was removed and the product was purified by column chromatography using silica gel and ethyl acetate as eluent. Dendron **20** was obtained as a white solid in 92% yield (0.138 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 7.49 and 7.28 (s, CON*H*, 4H), 2.63 (t, *J* = 6.5 Hz, CH₂CH₂COOH, 2H), 2.46 (t, *J* = 6.5 Hz, CH₂CH₂COOH, 2H), 2.17 (m, C_qCH₂CH₂CO, 24H), 1.94 (m, C_qCH₂CH₂CO, 24H), 1.45 (s, COOC(CH₃)₃, 81H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 175.3 (CONH), 174.5 (COOtBu), 173.8 (COOH), 81.5 (COOC(CH₃)₃), 58.8 (NHC_q), 32.5 (CH₂CH₂CONH), 32.2 (CH₂CH₂CONH), 30.6 (CH₂CH₂COOtBu), 30.4 (CH₂CH₂COOtBu), 30.0 (CH₂CH₂COOH), 29.6 (CH₂CH₂COOH), 28.3 (COOC(CH₃)₃). MS-ESI [M⁻] *m*/*z* calcd for C₈₀H₁₃₈N₄O₂₄: 1539.0, found 1538.3. Anal. calcd. for C₈₀H₁₃₈N₄O₂₄: C 62.39, H 9.03; found C 62.32, H 9.01.

Synthesis of 21

Product **19** (0.020 g, 0.0080 mmol) and dendron **20** (0.015 g, 0.010 mmol) were dissolved in 5 mL of dry DMF. HATU (0.0034 g, 0.010 mmol) and diisopropylethylamine (0.003 g, 0.020 mmol) were added, and the solution was stirred at room temperature for 24h. The solvent was removed under vacuum and the product was purified by dialysis against methanol (3 x 1L), using a Spectra-Por MWCO 2000 dialysis membrane. Dendrimer **21** was obtained as a yellow waxy product in 81% yield (0.026 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} vs. TMS): 8.01-6.41 (arom. CH and CONH, 20H), 4.61 (s, triazole-CH₂CH₂, 2H), 4.58 (s, NHCH₂-triazole, 2H), 3.96 (s, OCH₂CONH, 2H), 3.90 (s, OCH₂CH₂NHCO, 2H), 3.66 and 3.64 (s, OCH₂CH₂O, 4H), 3.45 (m, NHCH₂CH₂CH₂-triazole, 2H), 3.36 (t, J = 6.6 Hz, CH_2N_3 , 18H), 3.25 (t, J = 6.7 Hz, NHC $H_2CH_2CH_2N_3$, 18H), 2.64 (m, CH_2CH_2CONH , 2H), 2.47 (m, CH₂CH₂CONH, 2H), 2.18 (m, CH₂CH₂CONH and CH₂CH₂COOtBu, 48H), 2.00 (m, CH₂CH₂CONH, CH₂CH₂COOtBu and NHCH₂CH₂CH₂-triazole, 50H), 1.76 (m, NHCH₂CH₂CH₂N₃, 18H), 1.45 (s, COOC(CH₃)₃, 81H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} vs. TMS): 182.7 (NHC=S), 175.5, 175.3, 174.4 and 169.6 (C=O), 158.5 (arom. C_qOH), 148.1 (arom. CNH), 142.2 and 123.2 (CH of triazole), 141.6, 139.5, 130.4, 126.5 and 124.4 (arom. Cq of FITC), 135.9 (arom. CCONH), 132.5, 121.2 and 104.2 (arom. CH of FITC), 116.1, 115.8 and 115.7 (arom. CH of core), 81.4 (COOC(CH₃)₃), 72.2, 71.5, 71.2 and 70.2 (CH₂OCH₂), 59.3 (NHC_a), 57.4 (NHCH₂-triazole), 51.0 (NHCH₂CH₂CH₂triazole), 50.2 (CH₂N₃), 41.6 (NH₂CH₂CH₂O), 38.7 (NHCH₂CH₂CH₂), 37.9 (NHCH₂CH₂CH₂N₃), 31.7 (CH₂CH₂CONH), 31.4 (CH₂CH₂CONH), 30.5 (CH₂CH₂COOtBu), 30.3 (CH₂CH₂COOtBu), 29.7 (NHCH₂CH₂CH₂N₃), 29.2 (NHCH₂CH₂CH₂), 28.3 (COOC(CH₃)₃). MS MALDI-TOF [MH⁺] *m/z* calcd for C₁₈₈H₂₉₁N₅₂O₄₅S: 4029.2, found: 4030.1. Anal. calcd. for C₁₈₈H₂₉₀N₅₂O₄₅S: C 56.02, H 7.25; found C 55.74, H 7.16.

Dendrimer **21** (0.020 g, 0.0050 mmol) was dissolved in 20 mL of formic acid and 2 mL of water were added. The solution was stirred at room temperature for 16h. The solution was evaporated to dryness and the product was washed three times with ethylic ether. Dendrimer **22** was obtained as a yellow waxy product in 96% yield (0.017 g).

¹H NMR (MeOD, 400 MHz, δ_{ppm} *vs.* TMS): 8.01-6.41 (arom. *CH* and CON*H*, 20H), 4.61 (s, triazole-*CH*₂CH₂, 2H), 4.58 (s, NHC*H*₂-triazole, 2H), 3.95 (s, OC*H*₂CONH, 2H), 3.90 (s, OC*H*₂CH₂NHCO, 2H), 3.70-3.48 (m, OC*H*₂C*H*₂O and NHC*H*₂CH₂CH₂-triazole, 6H), 3.35 (t, *J* = 5.5 Hz, *CH*₂N₃, 18H), 3.24 (t, *J* = 6.3 Hz, NHC*H*₂CH₂CH₂N₃, 18H), 2.64 (m, CH₂C*H*₂CONH, 2H), 2.47 (m, *CH*₂CH₂CONH, 2H), 2.27 (m, CH₂C*H*₂COOH, 18H), 2.17 (m, CH₂C*H*₂CONH, 24H), 2.00 (m, *CH*₂CH₂CONH, *CH*₂CH₂COOH and NHCH₂C*H*₂CH₂-triazole, 50H), 1.76 (m, NHCH₂C*H*₂CH₂N₃, 18H). ¹³C NMR (MeOD, 100 MHz, δ_{ppm} *vs.* TMS): 182.8 (NHC=S), 175.5, 175.3, 174.4, 173.2 and 169.6 (*C*=O), 158.4 (arom. *C_q*OH), 148.0 (arom. *C*NH), 142.2 and 123.3 (*C*H of triazole), 141.6, 139.5, 130.5, 126.5 and 124.3 (arom. *C_q* of FITC), 135.8 (arom. *C*CONH), 132.5, 121.2 and 104.2 (arom. *C*H of FITC), 116.1, 115.8 and 115.7 (arom. *C*H of core), 72.3, 71.6, 71.2 and 70.4 (*C*H₂OCH₂), 59.4 (NH*C_q*), 57.4 (NH*C*H₂-triazole), 51.0 (NHCH₂CH₂CH₂-triazole), 50.2 (*C*H₂N₃), 41.6 (NH₂CH₂CCOH), 30.5 (CH₂CH₂COOH), 30.6 (*C*H₂CH₂COOH), 29.7 (NHCH₂CH₂CH₂N₃), 29.4 (*C*H₂CH₂COOH), 29.2 (NHCH₂CH₂CH₂). MS MALDI-TOF [MH⁺] *m*/z calcd for C₁₅₂H₂₁₉N₅₂O₄₅S: 3524.6, found: 3524.2. Anal. calcd. for C₁₅₂H₂₁₈N₅₂O₄₅S: C 56.02, H 7.25; found C 55.81, H 7.12.

Mass Spectra

¹H NMR Spectra

