Supporting Information

One-step preparation of xanthones via Pd-catalyzed annulation of 1,2-dibromoarenes and salicylaldehydes[†]

Sizhuo Wang, Kai Xie, Ze Tan,* Xiangyu An, Xingjian Zhou, Can-Cheng Guo, Zhihong Peng*

Table of Contents

General Consideration	S 2
II Representative Procedure	S 2
Characterization Data for Selected Compounds	S 2- S 22

General Consideration:

All solvents and reagents were purchased from the suppliers and used without further purification. ¹H NMR and ¹³C NMR were recorded in CDCl₃ at room temperature on a Varian INOVA-400 spectrometer (400 MHz ¹H). The chemical-shifts scale is based on internal TMS. All reactions were carried out under dry nitrogen atmosphere.

Representative Procedure and Selected Compounds Data

9H- xanthone^[1,2,3]

In a 25ml round-bottom flask equipped with a reflux condenser under N_2 was placed salicylaldehyde (122 mg, 1 mmol) and 1,2-dibromobenzene (470 mg, 2 mmol), K_2CO_3 (278 mg, 2 mmol), (PPh_3)_2PdCl_2 (35 mg, 0.05 mmol) and 5ml DMF. The mixture was heated to 130 °C for 12 hours before it was cooled to room temperature . The reaction mixture was diluted with diethyl ether (25 mL) and washed with water and brine. The aqueous layer was extracted with diethyl ether (3x25 mL). The organic layers were combined and dried with MgSO4, filtered, and the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 50/1) to afford the 118 mg of the desired product in 61% yield.

Yield: 61%, colorless crystals, mp: 172-173 °C;

¹H NMR (CDCl₃, 400 MHz) δ 7.26-7.30 (m, 2 H), 7.39 (d, *J* = 8.4 Hz, 2 H), 7.6 (t, *J* = 4.2 Hz, 2 H), 8.25 (t, *J* = 3.8 Hz, 2 H);

¹³C NMR (CDCl₃, 100 MHz) δ 116.93 (2 C), 120.78 (2 C), 122.85 (2 C), 125.66 (2 C), 133.76 (2 C), 155.10 (2 C), 176.15;

HRMS m/z calcd. for C₁₃H₈O₂, 196.0524, found 196.0529.

2-Methyl-9H-xanthone^[2]

Yield: 54%, colorless oil;

¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3 H), 7.27-7.32 (m, 2 H), 7.40 (d, J = 8.4 Hz, 1 H), 7.45 (d, J = 8.6 Hz, 1 H), 7.63 (t, J = 7.6 Hz, 1 H), 8.04 (s, 1 H), 8.26 (d, J = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 19.81, 116.72, 116.93, 120.47, 120.81, 122.68, 125.01, 125.72, 132.68, 133.60, 135.05, 153.40, 155.19, 176.27;

HRMS m/z calcd for C14H10O2, 210.0681, found 210.0686..

4-Methyl-9H-xanthone^[1]

Yield: 56%, colorless crystals, mp: 125-126 ℃;

¹H NMR (CDCl₃, 400 MHz) δ 2.47 (s, 3 H), 7.19-7.15 (m, 1 H), 7.28 (t, *J* = 7.6 Hz, 1 H), 7.30-7.47 (m, 2 H), 7.61-7.65 (m, 1 H), 8.09 (d, *J* = 8.4 Hz, 1 H), 8.25 (d, *J* = 8.0 Hz, 1 H);

 ^{13}C NMR (CDCl₃, 100 MHz) δ 14.75, 117, 120.63 (2 C) , 122.37, 122.81, 123.28, 125.65, 126.22, 133.60, 134.65, 153.52, 155.03, 176.50;

HRMS m/z calcd for C14H10O2, 210.0681, found 210.0684.

3-Methoxy-9H-xanthone^[2]

Yield: 53%, colorless oil..

¹H NMR (CDCl₃, 400 MHz) δ 3.86 (s, 3 H), 6.81 (s, 1 H), 6.87 (d, *J* = 8.8 Hz, 1 H), 7.30 (t, *J* = 7.2 Hz, 1 H), 7.38 (d, *J* = 8.4 Hz, 1 H), 7.60-7.64 (m, 1 H), 8.18 (d, *J* = 8.8 Hz, 1 H), 8.25 (d, *J* = 7.6 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 54.80, 99.21, 112.23, 114.84, 116.66, 120.99, 122.86, 125.66, 127.29, 133.25, 155.22, 157.08, 164.1, 175.27;

HRMS m/z calcd for C14H10O3, 226.0630, Found 226.0632.

4-Methoxy-9H-xanthone^[1,2]

Yield: 52%, colorless crystals, mp: 174-175 ℃;

¹H NMR (CDCl₃, 400 MHz) δ 3.94 (s, 3 H), 7.14 (d, *J* = 8.0 Hz, 1 H), 7.18 (d, *J* = 8.0 Hz, 1 H), 7.28-7.53 (m, 1 H), 7.51 (d, *J* = 8.0 Hz, 1 H), 7.62-7.66 (m, 1 H), 7.81 (d, *J* = 7.6 Hz, 1 H), 8.25 (d, *J* = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 56.311, 115.26, 117.48, 118.18, 121.58, 122.60, 123.33, 123.97, 126.52, 134.66, 146.43, 148.53, 155.84, 177.04;

HRMS m/z calcd for C14H10O3, 226.0630, Found 226.0634.

5-Methoxy-2-methyl-9H-xanthone / 5-Methoxy-3-methyl-9H-xanthone

Yield: 63%, colorless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.40 (s, 3 H), 2.43 (s, 3 H), 3.96 (s, 6 H), 7.14-7.23 (m, 5 H), 7.34 (s, 1 H), 7.46 (t, J = 4.0 Hz, 2 H) 7.82-7.85 (m, 2 H), 8.043 (s, 1 H), 8.14 (d, J = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.82, 20.94, 55.41 (2 C), 114.20, 116.63 (2 C), 116.67 (2 C), 117.03 (2 C), 122.20 (2 C), 122.26 (2 C), 124.61, 124.91, 125.41 (2 C), 132.88, 135.04, 145.25, 145.61 (2 C), 147.64 (2 C), 153.21, 155.05, 175.94, 176.20;

LRMS (CI) for $C_{15}H_{12}O_3 [M+H]^+$ calcd. 241, found 241.

Anal. Calcd for C₁₅H₁₂O₃: C, 74.99; H, 5.03; Found: C, 75.05; H, 5.12.

3-Methyl-9H-xanthone^[2] / 2-Methyl-9H-xanthone^[2]

Yield: 56% (a: $\mathbf{b} = 1 : 1$), colorless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.35 (s, 3 H), 2.38 (s, 3 H), 7.06 (d, J = 8.4 Hz, 1 H), 7.14 (s, 1 H), 7.25 (t, J = 7.8 Hz, 1 H), 7.34-7.36 (m, 2 H), 7.39-7.42 (m, 1 H), 7.57-7.61 (m, 2 H), 8.00 (s, 1 H), 8.10 (d, J = 8.0 Hz, 1 H), 8.21-8.24 (m, 2 H);

¹³C NMR (CDCl₃, 100 MHz) δ 19.77, 20.92, 116.68, 116.86 (2 C), 116.89 (2 C), 122.63 (2 C), 124.70, 124.38, 124.96, 125.45, 125.62, 125.66 (2 C), 132.63, 133.48, 133.55, 133.73, 134.99, 145.25, 153.34, 155.09, 155.13, 155.22, 175.91, 176.18;

LRMS (CI) for $C_{14}H_{10}O_2 [M+H]^+$ calcd. 211, found 211.

Yield: 60% (a: b = 1 : 1), colorless oil.

a: colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 2.42 (s, 3 H), 2.46 (s, 3 H), 7.10 (d, J = 8.0 Hz, 1 H), 7.17 (t, J = 7.2 Hz, 1 H), 7.24 (s, 1 H), 7.46 (d, J = 7.2 Hz, 1 H), 8.09 (d, J = 8.0 Hz, 1 H), 8.24 (t, J = 7.6 Hz, 1 H);

Me

¹³C NMR (CDCl₃, 100 MHz) δ 14.75, 20.93, 116.77, 118.41, 120.71, 122.229, 123.25, 124.37, 125.44, 126.12, 134.43, 145.10, 153.48, 155.14, 176.32;

LRMS (CI) for $C_{15}H_{12}O_2 [M+H]^+$ calcd. 225, found 225.

b: colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H), 2.48 (s, 3 H), 7.19 (m, 1 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.45 (d, J = 8.0 Hz, 1 H), 7.47 (d, J = 7.2 Hz, 1 H), 8.036 (s, 1 H), 8.10 (t, J = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 14.78, 19.82, 116.78, 120.25, 120.61, 122.17, 123.30, 124.95, 126.18, 132.60, 134.47, 134.90, 153.29, 153.50, 176.61;

LRMS (CI) for $C_{15}H_{12}O_2 [M+H]^+$ calcd. 225, found 225.

Anal. Calcd for C₁₅H₁₂O₂: C, 80.34; H, 5.39; Found: C, 80.42; H, 5.44.

2,3-Dimethoxy-9H-xanthone^[2,3]

Yield: 36%, colorless oil.

¹H NMR (CDCl₃, 400 MHz) δ 3.86 (s, 3 H), 3.94 (s, 3 H), 6.85 (s, 1 H), 7.30 (t, *J* = 8.0 Hz, 1 H), 7.38 (d, *J* = 8.0 Hz, 1 H), 7.60 (s, 1 H), 7.63 (m, 1 H), 8.27 (d, *J* = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 55.33, 55.45, 98.63, 104.42, 113.91, 116.64, 120.5.1, 122.73, 125.53, 132.93, 145.73, 151.43, 154.45, 155.06, 175.04;

HRMS m/z calcd forC15H12O4, 256.0736, found 256.0740.

2,3-Dimethoxy-5-methyl-9H-xanthone

Yield: 33%, colorless oil.

¹H NMR (CDCl₃, 400 MHz) δ 2.47 (s, 3 H), 3.92 (s, 3 H), 3.95 (s, 3 H), 6.86 (s, 1 H), 7.16-7.20 (m, 1 H), 7.44 (d, *J* = 7.2 Hz, 1 H), 7.58 (s, 1 H), 8.10 (d, *J* = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 14.77, 55.32, 55.47, 98.70, 104.36, 113.71, 120.31, 122.23, 123.11, 125.89, 133.84, 145.70, 151.30, 153.47, 154.36, 175.38;

LRMS (CI) for $C_{16}H_{14}O_4 [M+H]^+$ calcd. 271, found 271.

Anal. Calcd for C₁₆H₁₄O₄: C, 71.10; H, 5.22; Found: C, 71.20; H, 5.30.

3-(Diethyl amino) - 9H-xanthone

Yield: 38%, black oil.

¹H NMR (CDCl₃, 400 MHz) δ 1.17 (t, *J* = 7.2 Hz, 6 H), 3.35-3.41 (m, 4 H), 6.4 (s, 1 H), 6.60-6.63 (m, 1 H), 7.19-7.25 (m, 1 H), 7.30 (d, *J* = 8.0 Hz, 1 H), 7.52-7.56 (m, 1 H), 8.05 (d, *J* = 9.2 Hz, 1 H) 8.21-8.23 (m, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 11.5 (2 C), 43.78 (2 C), 95.11, 108.39, 110.24, 116.29, 121.28, 122.27, 125.45, 127.14, 132.48, 151.82, 155.10, 157.66, 174.58;

LRMS (CI) for $C_{17}H_{17}NO_2 [M+H]^+$ calcd. 268, found 268.

Anal. Calcd for C₁₇H₁₇NO₂: C, 76.38; H, 6.41; N, 5.24; Found: C, 76.48; H, 6.52; N, 5.28.

a

6-Methoxy-2-methyl-9H-xanthone

Yield: 59% ($\mathbf{a} : \mathbf{b} = 1 : 1$), colorless oil.

a: ¹H NMR (CDCl₃, 400 MHz) δ 2.41 (s, 3 H), 3.84 (s, 3 H), 6.74 (s, 1 H), 6.82-6.85 (m, 1 H), 7.08 (d, *J* = 8.0 Hz, 1 H), 7.16 (d, *J* = 8.0 Hz, 1 H), 8.10 (d, *J* = 8.0 Hz, 1 H), 8.14 (d, *J* = 8.0 Hz, 1 H);

b

¹³C NMR (CDCl₃, 100 MHz) δ 21.88, 55.75, 100.17, 112.99, 115.82 (2 C), 117.45, 119.66, 125.31, 126.39, 128.16, 145.66, 156.27, 157.97, 164.87, 176.11;

LRMS (CI) for $C_{15}H_{12}O_3 [M+H]^+$ calcd. 241, found 241;

b: ¹H NMR (CDCl₃, 400 MHz) δ 2.37 (s, 3 H), 3.83 (s, 3 H), 6.75 (s, 1 H), 6.81-6.84 (m, 1 H), 7.24 (d, *J* = 8.0 Hz, 1 H), 7.39 (d, *J* = 8.0 Hz, 1 H), 8.0 (d, *J* = 8.0 Hz, 1 H), 8.14 (d, *J* = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 20.78, 55.74, 100.05, 113.05, 115.72 (2 C), 117.38, 121.50, 125.94, 128.18, 133.56, 135.42, 154.36, 158.01, 164.90, 176.31;

LRMS (CI) for $C_{15}H_{12}O_3 [M+H]^+$ calcd. 241, found 241.

Anal. Calcd for $C_{15}H_{12}O_3$: C, 74.99; H, 5.03; Found: C, 75.12; H, 5.16.

2,7-Dimethyl-9H-xanthone

Yield: 61% (**a**: **b** = 1 : 1), colorless oil..

¹H NMR (CDCl₃, 400 MHz) δ 2.34 (s, 9 H), 2.37 (s, 3 H), 7.04 (d, *J* = 8.0 Hz, 1 H), 7.11 (s, 1 H), 7.17-7.24 (m, 3 H), 7.37-7.39 (m, 3 H), 7.99 (s, 3 H), 8.09 (d, *J* = 8.0 Hz, 1 H);

¹³C NMR (CDCl₃, 100 MHz) δ 19.78 (3 C), 20.93, 116.65, 116.68, 118.54 (3 C), 120.37 (2 C), 120.47, 124.23, 124.95 (2 C), 125.46, 132.43 (2 C), 132.50, 134.79 (3 C), 134.89, 145.09, 153.32 (2 C), 153.39, 155.26, 176.08, 176.35;

LRMS (CI) for $C_{15}H_{12}O_2[M+H]^+$ calcd. 245, found 245.

Anal. Calcd for $C_{15}H_{12}O_2$: C, 80.34; H, 5.39; Found: C, 80.52; H, 5.48.

12H-benzo[a]xanthone

Yield: 34%, colorless oil..

¹H NMR (CDCl₃, 400 MHz) δ 7.39 (t, J = 7.6 Hz, 1 H), 7.48-7.55 (m, 3 H), 7.65-7.74 (m, 2 H),

7.84 (d, J = 8.0 Hz, 1 H), 8.07 (d, J = 9.2 Hz, 1 H), 8.38 (d, J = 8.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 113.62, 116.52, 117.04, 122.63, 123.32, 125.14, 125.71, 125.98, 127.35, 128.56, 129.17, 130.19, 132.93, 135.66, 153.713, 156.66, 177.52; HRMS m/z calcd for C₁₇H₁₀O₂, 246.0681, found 246.0684. Anal. Calcd for C₁₇H₁₀O₂: C, 82.91; H, 4.09; Found: C, 83.03; H, 4.18.

Reference :

- 1. K. Okuma, A. Nojima, N. Matsunaga and K. Shioji, Org. Lett., 2009, 11, 169.
- 2. Jian Zhao and Richard C. Larock*, J. Org. Chem., 2007, 72, 583.
- 3. Jian Zhao and Richard C. Larock*, Org. Lett., 2005, 7, 4273.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

S 1 7

S 1 8

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2009

