# Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2009 data_global _journal_name_full Chem.Commun. _journal_coden_cambridge 0182 _journal_year ? _journal_volume ? _journal_page_first ? _publ_contact_author_name 'Alan Balch' _publ_contact_author_email albalch@ucdavis.edu loop_ _publ_author_name 'Thelma Y. Garcia' 'James C. Fettinger' 'Marilyn M. Olmstead' 'Alan L. Balch' data_jf1583 _database_code_depnum_ccdc_archive 'CCDC 737632' _audit_creation_method SHELXL-97 _chemical_name_systematic ; ? ; _chemical_name_common 'Dicobalt octacarbonyl^.^C~60~' _chemical_melting_point ? _chemical_formula_moiety 'C60, Co2 C8 O8' _chemical_formula_sum 'C68 Co2 O8' _chemical_formula_weight 1066.57 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Co Co 0.3494 0.9721 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting trigonal _symmetry_space_group_name_H-M 'R -3 m' _symmetry_space_group_name_Hall '-R 3 2' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-y, x-y, z' '-x+y, -x, z' 'y, x, -z' 'x-y, -y, -z' '-x, -x+y, -z' 'x+2/3, y+1/3, z+1/3' '-y+2/3, x-y+1/3, z+1/3' '-x+y+2/3, -x+1/3, z+1/3' 'y+2/3, x+1/3, -z+1/3' 'x-y+2/3, -y+1/3, -z+1/3' '-x+2/3, -x+y+1/3, -z+1/3' 'x+1/3, y+2/3, z+2/3' '-y+1/3, x-y+2/3, z+2/3' '-x+y+1/3, -x+2/3, z+2/3' 'y+1/3, x+2/3, -z+2/3' 'x-y+1/3, -y+2/3, -z+2/3' '-x+1/3, -x+y+2/3, -z+2/3' '-x, -y, -z' 'y, -x+y, -z' 'x-y, x, -z' '-y, -x, z' '-x+y, y, z' 'x, x-y, z' '-x+2/3, -y+1/3, -z+1/3' 'y+2/3, -x+y+1/3, -z+1/3' 'x-y+2/3, x+1/3, -z+1/3' '-y+2/3, -x+1/3, z+1/3' '-x+y+2/3, y+1/3, z+1/3' 'x+2/3, x-y+1/3, z+1/3' '-x+1/3, -y+2/3, -z+2/3' 'y+1/3, -x+y+2/3, -z+2/3' 'x-y+1/3, x+2/3, -z+2/3' '-y+1/3, -x+2/3, z+2/3' '-x+y+1/3, y+2/3, z+2/3' 'x+1/3, x-y+2/3, z+2/3' _cell_length_a 12.2274(3) _cell_length_b 12.2274(3) _cell_length_c 21.3370(12) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 120.00 _cell_volume 2762.69(18) _cell_formula_units_Z 3 _cell_measurement_temperature 90(2) _cell_measurement_reflns_used 5275 _cell_measurement_theta_min 2.71 _cell_measurement_theta_max 27.323 _exptl_crystal_description block _exptl_crystal_colour 'brownish black' _exptl_crystal_size_max 0.19 _exptl_crystal_size_mid 0.14 _exptl_crystal_size_min 0.13 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.916 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1578 _exptl_absorpt_coefficient_mu 0.984 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.838 _exptl_absorpt_correction_T_max 0.879 _exptl_absorpt_process_details 'SADABS 2.10 (Sheldrick, 2003)' _exptl_special_details ; 432_ALERT_2_A Short Inter X...Y Contact C8 .. C8 .. 2.45 Ang. 432_ALERT_2_A Short Inter X...Y Contact C8 .. C8 .. 2.45 Ang. 432_ALERT_2_A Short Inter X...Y Contact C8 .. C8 .. 2.83 Ang. #============================================================================== This alert is an artifact due to symmetry. These are normal intramolecular contacts within the C60 ball. #============================================================================== 432_ALERT_2_B Short Inter X...Y Contact C2 .. C2 .. 3.05 Ang. 432_ALERT_2_B Short Inter X...Y Contact C2 .. C2 .. 3.05 Ang. #============================================================================== This alert is an artifact due to symmetry. These are normal intramolecular contacts within the Co2(CO)8. ; _diffrn_ambient_temperature 90(2) _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Bruker SMART Apex II' _diffrn_measurement_method \w _diffrn_detector_area_resol_mean 8.3 _diffrn_standards_number ? _diffrn_standards_interval_count ? _diffrn_standards_interval_time ? _diffrn_standards_decay_% ? _diffrn_reflns_number 8245 _diffrn_reflns_av_R_equivalents 0.0351 _diffrn_reflns_av_sigmaI/netI 0.0148 _diffrn_reflns_limit_h_min -15 _diffrn_reflns_limit_h_max 15 _diffrn_reflns_limit_k_min -15 _diffrn_reflns_limit_k_max 15 _diffrn_reflns_limit_l_min -27 _diffrn_reflns_limit_l_max 27 _diffrn_reflns_theta_min 2.15 _diffrn_reflns_theta_max 27.47 _reflns_number_total 805 _reflns_number_gt 724 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'Apex2 (Bruker, 2005)' _computing_cell_refinement 'SAINT 7.23 (Bruker, 2005)' _computing_data_reduction 'SAINT 7.23 (Bruker, 2005)' _computing_structure_solution 'SHELXS97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL97 (Sheldrick, 2008)' _computing_molecular_graphics 'SHELXTL 5.1, XP (Sheldrick, 1994)' _computing_publication_material 'SHELXL97 (Sheldrick, 2008)' _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0672P)^2^+47.3423P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens ? _refine_ls_hydrogen_treatment ? _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 805 _refine_ls_number_parameters 70 _refine_ls_number_restraints 0 _refine_ls_R_factor_all 0.0646 _refine_ls_R_factor_gt 0.0600 _refine_ls_wR_factor_ref 0.1550 _refine_ls_wR_factor_gt 0.1510 _refine_ls_goodness_of_fit_ref 1.070 _refine_ls_restrained_S_all 1.070 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Co1 Co 0.3333 0.6667 0.10340(5) 0.0118(3) Uani 1 6 d S . . O1 O 0.3333 0.6667 -0.0339(3) 0.0313(16) Uani 1 6 d S . . O2 O 0.47254(17) 0.52746(17) 0.10848(16) 0.0231(8) Uani 1 2 d S . . C1 C 0.3333 0.6667 0.0191(4) 0.0179(16) Uani 1 6 d S . . C2 C 0.4187(2) 0.5813(2) 0.1091(2) 0.0165(9) Uani 1 2 d S . . C3 C 0.1648(3) 0.3297(5) 0.0258(3) 0.0367(15) Uani 1 2 d S . . C4 C 0.1427(2) 0.2855(5) 0.0853(3) 0.0257(12) Uani 1 2 d S . . C5 C 0.0133(4) 0.2188(4) 0.11255(16) 0.0258(9) Uani 1 1 d . . . C6 C -0.0861(4) 0.2025(4) 0.07698(19) 0.0300(9) Uani 1 1 d . . . C7 C -0.0606(5) 0.2538(4) 0.0114(2) 0.0387(11) Uani 1 1 d . . . C8 C -0.0012(3) 0.1151(3) 0.15227(14) 0.0191(7) Uani 1 1 d . . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Co1 0.0124(4) 0.0124(4) 0.0108(5) 0.000 0.000 0.0062(2) O1 0.039(3) 0.039(3) 0.015(3) 0.000 0.000 0.0197(13) O2 0.0281(15) 0.0281(15) 0.0211(17) 0.0006(7) -0.0006(7) 0.0200(17) C1 0.019(2) 0.019(2) 0.015(4) 0.000 0.000 0.0096(12) C2 0.0173(16) 0.0173(16) 0.013(2) 0.0009(9) -0.0009(9) 0.0074(19) C3 0.050(3) 0.012(2) 0.036(3) -0.002(2) -0.0011(11) 0.0060(12) C4 0.030(2) 0.016(2) 0.026(3) -0.013(2) -0.0063(10) 0.0082(12) C5 0.045(2) 0.0229(18) 0.0153(15) -0.0063(14) -0.0001(15) 0.0215(17) C6 0.031(2) 0.031(2) 0.034(2) -0.0113(16) 0.0019(16) 0.0192(19) C7 0.070(3) 0.037(2) 0.035(2) -0.0091(18) -0.012(2) 0.047(2) C8 0.035(2) 0.0207(17) 0.0065(12) -0.0038(12) -0.0007(13) 0.0172(16) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Co1 C1 1.799(8) . ? Co1 C2 1.811(5) 2_665 ? Co1 C2 1.811(5) 3_565 ? Co1 C2 1.811(5) . ? Co1 Co1 2.700(2) 25_565 ? O1 C1 1.131(11) . ? O2 C2 1.141(6) . ? C3 C4 1.355(8) . ? C3 C7 1.432(6) 6 ? C3 C7 1.432(6) 20 ? C4 C5 1.489(5) . ? C4 C5 1.489(5) 23 ? C5 C6 1.361(6) . ? C5 C8 1.461(5) . ? C6 C6 1.423(8) 22 ? C6 C7 1.501(6) . ? C7 C7 1.373(10) 6 ? C7 C3 1.432(6) 21 ? C8 C8 1.393(7) 22 ? C8 C8 1.436(7) 23 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C1 Co1 C2 93.84(15) . 2_665 ? C1 Co1 C2 93.84(15) . 3_565 ? C2 Co1 C2 119.56(3) 2_665 3_565 ? C1 Co1 C2 93.84(15) . . ? C2 Co1 C2 119.56(3) 2_665 . ? C2 Co1 C2 119.56(3) 3_565 . ? C1 Co1 Co1 180.0 . 25_565 ? C2 Co1 Co1 86.16(15) 2_665 25_565 ? C2 Co1 Co1 86.16(15) 3_565 25_565 ? C2 Co1 Co1 86.16(15) . 25_565 ? O1 C1 Co1 180.000(1) . . ? O2 C2 Co1 175.5(4) . . ? C4 C3 C7 118.8(3) . 6 ? C4 C3 C7 118.8(3) . 20 ? C7 C3 C7 111.1(6) 6 20 ? C3 C4 C5 122.0(3) . . ? C3 C4 C5 122.0(3) . 23 ? C5 C4 C5 104.3(5) . 23 ? C6 C5 C8 119.0(4) . . ? C6 C5 C4 119.4(4) . . ? C8 C5 C4 109.6(4) . . ? C5 C6 C6 121.4(2) . 22 ? C5 C6 C7 118.3(4) . . ? C6 C6 C7 108.2(3) 22 . ? C7 C7 C3 121.6(5) 6 21 ? C7 C7 C6 120.0(5) 6 . ? C3 C7 C6 106.2(4) 21 . ? C8 C8 C8 120.000(1) 22 23 ? C8 C8 C5 119.7(2) 22 . ? C8 C8 C5 108.2(2) 23 . ? _diffrn_measured_fraction_theta_max 1.000 _diffrn_reflns_theta_full 27.47 _diffrn_measured_fraction_theta_full 1.000 _refine_diff_density_max 1.571 _refine_diff_density_min -0.507 _refine_diff_density_rms 0.121