Supplementary information:

Diastereoselective HOTf-catalyzed three-component one-pot 1,3-dipolar cycloaddition of α-diazo ester, nitrosobenzene and electron-deficient alkene

Zhen-Jiang Xu, Di Zhu, Xiaofei Zeng, Fei Wang, Bin Tan, Yuxuan Hou, Yunbo Lv, and Guofu Zhong*

Division of Chemistry and Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

Contents

General information 2

Experimental procedures and characterizations 3

References 9

Effect of solvents on the cycloaddition 9

NMR spectra 10
General information: Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents employed in the reactions were used directly without purification. Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F 254 nm. Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate.

Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.

Proton nuclear magnetic resonance spectra (1H NMR) were recorded on Bruker AMX 500 and Bruker Avance DPX300 spectrophotometer (CDCl$_3$ as solvent). Chemical shifts for 1H NMR spectra are reported as δ in units of parts per million (ppm) relative to the signal of chloroform-d (δ 7.26, single) or solvent. Multiplicities were given as: s (singlet), d (doublet), t (triplet), dd (double of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH. Coupling constants are reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (13C NMR) are reported as δ in units of parts per
High resolution mass spectrometry (HRMS) was recorded on Finnigan MAT 95 × P spectrometer.

Experimental procedures and characterizations:

General procedure for the HOTf catalyzed three component 1,3-dipolar cycloaddition reaction of α-diazo ester, nitrosobenzene and electron deficient alkene

To a solution of nitrosobenzene (0.25 mmol), electron deficient alkene (0.5 mmol) and HOTf (2 mol%) in CH₂Cl₂ (1.0 mL) was added α-diazo ester (0.3 mmol), the resulted solution was stirred at room temperature (23 °C) and monitored by TLC. Upon completion of consumption of nitrosobenze, the solution was concentrated and purified by flush column chromatography using an ethyl acetate/ hexane as eluant on silica gel to afford the desired cycloadduct.

Characterization of the product:

4a

\[\text{Ph} \quad \text{EtO} - \text{C} - \text{N}=\text{O} \quad \text{''CO}_2\text{Me} \]

\[^{1}H\text{ NMR (CDCl}_{3},\ 500 \text{ MHz}): \delta \ 1.31 (t, J = 7.2 \text{ Hz}, 3 \text{H}), \ 3.52 (s, 3 \text{H}), \ 3.68 (s, 3 \text{H}), \ 4.26-4.34 (m, 3 \text{H}), \ 4.79 (d, J = 7.0 \text{ Hz}, 1 \text{H}), \ 5.01 (d, J = 7.5 \text{ Hz}, 1 \text{H}), \ 6.99 (t, J = 7.5 \text{ Hz}, 1 \text{H}), \ 7.14 (d, J = 8.0 \text{ Hz}, 2 \text{H}), \ 7.26-7.27 (m, 2 \text{H}). \]

\[^{13}C\text{ NMR (CDCl}_{3},\ 125 \text{ MHz}): \delta \ 14.1, \ 52.4, \ 52.7, \ 53.8, \ 62.4, \ 68.1, \ 77.6, \ 114.6, \ 122.7, \ 128.7, \ 150.4, \ 168.4, \ 169.7 \]

HRMS (ESI): Anal. For C_{16}H_{20}NO_{7}^{+1} (M^{+}+1) Calcd.: 338.1240, Found: 338.1236
H NMR (CDCl₃, 500 MHz): δ 3.51 (s, 3H), 3.68 (s, 3H), 3.84 (s, 3H), 4.33 (t, \(J = 7.0 \) Hz, 3H), 4.83 (d, \(J = 7.0 \) Hz, 1H), 5.01 (d, \(J = 7.0 \) Hz, 1H), 6.95 (t, \(J = 7.5 \) Hz, 1H), 7.13 (d, \(J = 8.0 \) Hz, 2H), 7.26-7.29 (m, 2H).

13C NMR (CDCl₃, 125 MHz): δ 52.4, 52.7, 53.3, 53.8, 67.8, 77.7, 114.5, 122.7, 128.8, 150.3, 168.4, 170.2

HRMS (ESI): Anal. For C₁₁H₁₅NO₇⁺ (M⁺+1) Calcd.: 324.1083, Found: 324.1082

![Chemical Structure](image)

H NMR (CDCl₃, 500 MHz): δ 1.30 (t, \(J = 7.2 \) Hz, 3H), 3.56 (s, 3H), 3.68 (s, 3H), 4.26-4.30 (m, 2H), 4.30-4.32 (m, 1H), 4.73 (d, \(J = 6.8 \) Hz, 1H), 4.99 (d, \(J = 7.4 \) Hz, 1H), 7.08 (d, \(J = 9.0 \) Hz, 2H), 7.22 (d, \(J = 9.0 \) Hz, 1H).

13C NMR (CDCl₃, 125 MHz): δ 14.1, 52.6, 52.8, 53.8, 62.5, 68.0, 77.6, 115.9, 127.7, 128.7, 149.0, 168.3, 168.3, 169.3

HRMS (ESI): Anal. For C₁₆H₁₉NO₇ Cl⁺ (M⁺+1) Calcd.: 372.0850, Found: 372.0846

![Chemical Structure](image)

H NMR (CDCl₃, 500 MHz): δ 1.32 (t, \(J = 7.2 \) Hz, 3H), 3.56 (s, 3H), 3.69 (s, 3H), 4.28-4.35 (m, 3H), 4.73 (d, \(J = 6.8 \) Hz, 1H), 4.99 (d, \(J = 7.4 \) Hz, 1H), 6.92-6.95 (m, 1H), 7.97-7.99 (m, 1H), 7.20-7.16 (m, 2H)

13C NMR (CDCl₃, 125 MHz): δ 14.1, 52.6, 52.8, 53.6, 62.6, 67.8, 77.7, 112.2, 114.4, 122.3, 129.9, 134.6, 151.7, 168.2, 168.3, 169.4

HRMS (ESI): Anal. For C₁₆H₁₉NO₇ Cl⁺ (M⁺+1) Calcd.: 372.0850, Found: 372.0853

![Chemical Structure](image)
1H NMR (CDCl$_3$, 500 MHz): δ 1.33 (t, $J = 7.5$ Hz, 3H), 3.58 (s, 3H), 3.70 (s, 3H), 4.29-4.32 (m, 2H), 4.33-4.35 (m, 1H), 4.75 (d, $J = 6.8$ Hz, 1H), 5.01 (d, $J = 7.4$ Hz, 1H), 7.04 (d, $J = 9.0$ Hz, 2H), 7.39 (d, $J = 9.0$ Hz, 1H).

13C NMR (CDCl$_3$, 125 MHz): δ 14.7, 52.6, 52.8, 53.7, 62.6, 67.9, 77.6, 115.2, 116.2, 131.6, 149.5, 168.2, 168.3, 169.3

HRMS (ESI): Anal. For C$_{16}$H$_{19}$NO$_7$Br$^+$ (M$^+$+1) Calcd.: 416.0345, Found: 416.0359

1H NMR (CDCl$_3$, 500 MHz): δ 1.33 (t, $J = 7.0$ Hz, 3H), 3.51 (s, 3H), 3.69 (s, 3H), 3.88 (s, 3H), 4.29-4.34 (m, 2H), 4.37 (t, $J = 7.0$ Hz, 1H), 4.88 (d, $J = 7.0$ Hz, 1H), 5.03 (d, $J = 7.0$ Hz, 1H), 7.12 (d, $J = 8.5$ Hz, 2H), 7.60 (d, $J = 8.5$ Hz, 2H).

13C NMR (CDCl$_3$, 125 MHz): δ 14.1, 51.8, 52.6, 52.8, 53.6, 62.7, 67.0, 77.8, 112.8, 123.4, 130.7, 154.0, 166.8, 168.0, 169.1, 169.3

HRMS (ESI): Anal. For C$_{18}$H$_{22}$NO$_9$ (M$^+$+1) Calcd.: 396.1295, Found: 396.1293

1H NMR (CDCl$_3$, 500 MHz): δ 1.31 (t, $J = 7.0$ Hz, 3H), 1.35 (t, $J = 7.0$ Hz, 3H), 3.49 (s, 3H), 3.67 (s, 3H), 4.29-4.35 (m, 5H), 4.86 (d, $J = 6.5$ Hz, 1H), 5.00 (d, $J = 7.5$ Hz, 1H), 7.09 (d, $J = 9.0$ Hz, 2H), 7.94 (d, $J = 9.0$ Hz, 2H).

13C NMR (CDCl$_3$, 125 MHz): δ 14.1, 14.4, 52.6, 52.8, 53.7, 60.7, 62.7, 67.0, 77.8, 112.8, 123.8, 130.7, 154.0, 166.3, 168.1, 168.2, 169.4

HRMS (ESI): Anal. For C$_{19}$H$_{24}$NO$_{9}$ (M$^+$+1) Calcd.: 410.1451, Found: 410.1451
Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010

1H NMR (CDCl₃, 500 MHz): δ 1.32 (t, J = 7.1 Hz, 3H), 2.30 (s, 3H), 3.59 (s, 3H), 3.70 (s, 3H), 4.26-4.32 (m, 3H), 4.74 (d, J = 7.0 Hz, 1H), 5.02 (d, J = 7.4 Hz, 1H), 7.07-7.11 (m, 4H).

13C NMR (CDCl₃, 125 MHz): δ 14.1, 20.7, 52.4, 52.7, 53.9, 62.3, 68.4, 77.5, 115.4, 129.3, 132.5, 147.8, 168.5, 168.6, 169.6

HRMS (ESI): Anal. For C₁₇H₂₂NO₇⁺ (M⁺+1) Calcd.: 352.1396, Found: 352.1397

![4i](image)

1H NMR (CDCl₃, 500 MHz): δ 1.01 (t, J = 7.2 Hz, 3H), 2.30 (s, 3H), 3.73 (s, 3H), 3.76 (s, 3H), 3.94-4.01 (m, 2H), 4.21 (dd, J = 8.1, 5.6 Hz, 1H), 4.69 (d, J = 5.6 Hz, 1H), 5.04 (d, J = 8.1 Hz, 1H), 7.09-7.13 (m, 2H), 7.13-7.18 (m, 2H), 7.49 (d, J = 7.8 Hz, 1H).

13C NMR (CDCl₃, 125 MHz): δ 13.7, 17.9, 52.6, 52.7, 54.0, 61.7, 67.4, 76.7, 120.5, 126.4, 126.6, 130.4, 132.7, 145.0, 168.4, 168.9, 169.4

HRMS (ESI): Anal. For C₁₇H₂₂NO₇⁺ (M⁺+1) Calcd.: 352.1396, Found: 352.1393

![5a](image)

1H NMR (CDCl₃, 500 MHz): δ 1.01 (t, J = 7.5 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 3.82-4.00 (m, 2H), 4.09-4.13 (m, 2H), 4.21-4.30 (m, 2H), 4.31-4.34 (m, 1H), 4.77 (d, J = 7.1 Hz, 1H), 4.96 (d, J = 7.4 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 7.13 (d, J = 8.7 Hz, 2H), 7.24 (dt, J = 8.7, 7.4 Hz, 2H).

13C NMR (CDCl₃, 125 MHz): δ 13.5, 13.9, 14.1, 54.1, 61.7, 61.8, 62.4, 68.2, 77.9, 114.4, 122.5, 128.8, 150.9, 167.9, 167.9, 169.9

HRMS (ESI): Anal. For C₁₈H₂₄NO₇⁺ (M⁺+1) Calcd.: 366.1553, Found: 366.1551

![5b](image)

1H NMR (CDCl₃, 500 MHz): δ 1.30 (t, J = 7.2 Hz, 3H), 3.59 (s, 3H), 3.84 (s, 3H), 4.25-4.29 (m, 2H), 4.33 (dd, J = 5.3, 3.6 Hz, 1H), 4.79 (d, J = 3.6 Hz, 1H), 5.11 (d, J = 5.3 Hz, 1H), 7.01 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 7.2 Hz, 2H), 7.26-7.29 (m, 2H).

13C NMR (CDCl₃, 125 MHz): δ 14.1, 52.9, 53.0, 54.2, 62.4, 70.4, 78.0, 115.4, 123.5, 129.0, 148.9, 168.8, 169.0, 169.9
HRMS (ESI): Anal. For $\text{C}_{18}\text{H}_{20}\text{NO}_7^{+1}$ (M$^+$+1) Calcd.: 338.1240, Found: 338.1237

![Chemical Structure](image1)

1H NMR (CDCl$_3$, 500 MHz): δ 1.08 (t, $J = 7.2$ Hz, 3H), 1.30 (t, $J = 7.2$ Hz, 3H), 1.32 (t, $J = 7.2$ Hz, 3H), 4.02 (q, $J = 7.2$ Hz, 2H), 4.26-4.29 (m, 4H), 4.30-4.33 (m, 1H), 4.82 (d, $J = 3.4$ Hz, 1H), 5.10 (d, $J = 5.4$ Hz, 1H), 7.00 (t, $J = 7.4$ Hz, 1H), 7.09 (d, $J = 7.8$ Hz, 2H), 7.26 (m, 2H).

13C NMR (CDCl$_3$, 125 MHz): δ 13.9, 14.1, 14.1, 54.5, 62.1, 62.4, 70.6, 78.2, 115.3, 123.4, 129.0, 149.1, 168.3, 169.1, 169.4

HRMS (ESI): Anal. For $\text{C}_{18}\text{H}_{20}\text{NO}_7^{+1}$ (M$^+$+1) Calcd.: 366.1553, Found: 366.1549

![Chemical Structure](image2)

1H NMR (CDCl$_3$, 500 MHz): δ 1.31 (t, $J = 6.9$ Hz, 3H), 4.29-4.38 (m, 2H), 4.98 (d, $J = 5.1$ Hz, 1H), 5.03 (dd, $J = 8.7$, 5.1 Hz, 1H), 5.30 (d, $J = 8.7$ Hz, 1H), 7.02 (t, $J = 7.2$ Hz, 1H), 7.17 (d, $J = 7.8$ Hz, 2H), 7.27-7.36 (m, 7H), 7.44-7.52 (m, 3H), 7.64 (d, $J = 7.2$ Hz, 2H).

13C NMR (CDCl$_3$, 75 MHz): δ 14.1, 62.3, 62.4, 71.9, 84.4, 114.3, 122.4, 127.4, 128.6, 128.8, 128.9, 129.1, 129.2, 133.8, 135.9, 136.0, 150.4, 170.8, 195.9

HRMS (ESI): Anal. For $\text{C}_{18}\text{H}_{22}\text{NO}_8^{+1}$ (M$^+$+1) Calcd.: 402.1705, Found: 402.1709

![Chemical Structure](image3)

1H NMR (CDCl$_3$, 500 MHz): δ 1.33 (t, $J = 7.2$ Hz, 3H), 4.31-4.39 (m, 2H), 4.87 (d, $J = 4.8$ Hz, 1H), 4.96 (dd, $J = 8.1$, 4.8 Hz, 1H), 5.58 (d, $J = 8.1$ Hz, 1H), 7.05 (t, $J = 7.2$ Hz, 1H), 7.13 (d, $J = 8.7$ Hz, 2H), 7.31-7.41 (m, 4H), 7.54-7.57 (m, 1H), 7.64-7.71 (m, 4H), 8.22 (d, $J = 8.7$ Hz, 2H).

13C NMR (CDCl$_3$, 75 MHz): δ 14.1, 62.1, 62.7, 71.8, 82.2, 114.4, 123.0, 124.0, 128.1, 128.7, 128.9, 129.3, 134.2, 135.7, 143.9, 148.2, 149.7, 170.3, 195.4

HRMS (ESI): Anal. For $\text{C}_{25}\text{H}_{23}\text{N}_2\text{O}_6^{+1}$ (M$^+$+1) Calcd.: 447.1556, Found: 447.1551
\[\text{5f} \]

\[^1\text{H NMR (CDCl}_3, 300\text{ MHz}) : \delta 1.31\ (t, J = 7.2 Hz, 3H), 4.28-4.39\ (m, 2H), 4.93\ (d, J = 6.0 Hz, 1H), 4.97\ (dd, J = 8.4, 6.0 Hz, 1H), 5.33\ (d, J = 8.4 Hz, 1H), 7.03\ (t, J = 7.5 Hz, 1H), 7.15\ (d, J = 7.8 Hz, 2H), 7.30-7.42\ (m, 8H), 7.53\ (t, J = 7.5 Hz, 1H), 7.67\ (d, J = 7.2 Hz, 2H). \]

\[^{13}\text{C NMR (CDCl}_3, 75\text{ MHz}) : \delta 14.1, 62.2, 62.5, 71.8, 83.4, 114.3, 122.6, 128.7, 128.8, 129.0, 129.2, 132.5, 134.0, 134.7, 134.9, 135.8, 150.1, 170.7, 195.8 \]

HRMS (ESI): Anal. For C\(_{25}\)H\(_{23}\)NO\(_4\)Cl\(^+\) (M\(^+\)+1) Calcd.: 436.1316, Found: 436.1317

\[\text{5g} \]

\[^1\text{H NMR (CDCl}_3, 300\text{ MHz}) : \delta 1.36\ (t, J = 7.2 Hz, 3H), 2.00\ (s, 3H), 4.22\ (dd, J = 9.3, 5.7 Hz, 1H), 4.31-4.36\ (m, 2H), 4.94\ (d, J = 5.7 Hz, 1H), 5.03\ (d, J = 9.3 Hz, 1H), 7.00\ (t, J = 7.2 Hz, 1H), 7.15\ (d, J = 7.8 Hz, 2H), 7.26-7.34\ (m, 2H), 7.40-7.46\ (m, 3H), 7.53-7.56\ (m, 2H). \]

\[^{13}\text{C NMR (CDCl}_3, 75\text{ MHz}) : \delta 14.2, 30.3, 62.3, 67.7, 70.2, 83.3, 114.2, 122.4, 127.7, 129.0, 129.2, 129.5, 135.7, 150.4, 170.8, 203.0 \]

HRMS (ESI): Anal. For C\(_{20}\)H\(_{22}\)NO\(_4\)\(^+\) (M\(^+\)+1) Calcd.: 340.1549, Found: 340.1553

\[\text{5h} \]

\[^1\text{H NMR (CDCl}_3, 300\text{ MHz}) : \delta 1.12\ (t, J = 7.2 Hz, 3H), 1.34\ (t, J = 7.2 Hz, 3H), 4.04-4.11\ (m, 3H), 4.29-4.36\ (m, 2H), 4.96\ (d, J = 4.8 Hz, 1H), 5.48\ (d, J = 8.4 Hz, 1H), 7.01\ (t, J = 7.2 Hz, 1H), 7.17\ (d, J = 7.8 Hz, 2H), 7.29-7.34\ (m, 2H), 7.36-7.44\ (m, 3H), 7.51-7.55\ (m, 2H). \]

\[^{13}\text{C NMR (CDCl}_3, 75\text{ MHz}) : \delta 14.0, 14.2, 59.3, 61.7, 62.3, 71.1, 83.1, 114.4, 122.5, 127.4, 128.7, 129.0, 129.2, 136.2, 150.1, 170.0, 170.3 \]

HRMS (ESI): Anal. For C\(_{21}\)H\(_{24}\)NO\(_5\)\(^+\) (M\(^+\)+1) Calcd.: 370.1654, Found: 370.1663

All the above cycloaddition products are liquid except products 4a and 5e, which X-ray crystal structures were determined as CCDC 755558 (4a: zgf43.cif) and CCDC 755559 (5e: zgf51.cif).
References:

Table Effect of solvents\(^a\)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH(_2)Cl(_2)</td>
<td>98</td>
</tr>
<tr>
<td>2</td>
<td>CHCl(_3)</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>toluene</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>benzene</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>CH(_3)CN</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>THF</td>
<td>53</td>
</tr>
<tr>
<td>7</td>
<td>Et(_2)O</td>
<td>68</td>
</tr>
</tbody>
</table>

\(^a\) Reaction conditions: HOTf/1a/2a/3a = 0.02:1.2:1:2 at room temperature (23 °C). \(^b\) Isolated yield.
NMR spectra:
Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

![NMR spectra images](image_url)