Electronic Supplementary Information for

In Situ Formation of *N*,*O*-Bidentate Ligand via the Hydrogen Bond for Highly Efficient Suzuki Reaction of Aryl Chlorides

Weibo Yang, Chun Liu* and Jieshan Qiu

State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012 PR China

E-Mail: chunliu70@yahoo.com

Contents

Materials and Methods and Experimental Procedure S1
Characterization Data S2-S3
*H NMR Spectra for all Cross-Coupling Products S5-S14
UV spectra of Pd at Different Stages S15

Materials and Methods

All aryl chlorides and arylboronic acids were used as received (Alfa Aesar, Avocado). All other chemicals were purchased from commercial sources and used without further purification. *H NMR spectra were recorded on Varian Inova 400 spectrometer or Bruker AvanceII 400 spectrometer. Chemical shifts were reported in ppm relative to TMS. All products were isolated by short chromatography on a silica gel (200-300 mesh) column using petroleum ether (60-90 °C), unless otherwise noted. Compounds described in the literature were characterized by *H NMR spectra to reported data.

Typical Procedure for Suzuki Reaction of Aryl Chlorides with Arylboronic Acids

A mixture of aryl chlorides (0.5 mmol), arylboronic acid (0.75 mmol), Pd(OAc)₂ (0.5 mol%, 0.56 mg), K₂CO₃ (1 mmol, 138.2 mg) and EtOH/DMA (2:2mL) was stirred at 80 °C for indicated time. The mixture was added to brine (15 mL) and extracted four times with ethyl acetate (3 × 10 mL). The solvent was concentrated in vacuo and the product was isolated by short chromatography on a silica gel (200-300 mesh) column.
Characterization Data

4-Nitrobiphenyl\[1\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{): } \delta 8.31 \text{ (d, } J = 8.8 \text{ Hz, 2H), 7.75 (d, } J = 8.8 \text{ Hz, 2H), 7.63 (d, } J = 6.8 \text{ Hz, 2H), 7.52-7.43 \text{ (m, 3H), ppm.} \]

4-Methyl-4'-nitrobiphenyl\[1\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 8.29 \text{ (d, } J = 8.8 \text{ Hz, 2H), 7.73 (d, } J = 8.8 \text{ Hz, 2H), 7.54(d, } J = 8.0 \text{ Hz, 2H), 7.31(d, } J = 7.6 \text{ Hz, 2H), 2.42 (s, 3H) ppm.} \]

3-Methyl-4'-nitrobiphenyl\[1\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 8.30 \text{ (d, } J = 8.8 \text{ Hz, 2H), 7.74 (d, } J = 8.4 \text{ Hz, 2H), 7.43 (m, 3H), 7.27(s,1H), 2.44 (s, 3H) ppm.} \]

2-Methyl-4'-nitrobiphenyl\[1\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 8.29 \text{ (d, } J = 8.4 \text{ Hz, 2H), 7.50 (d, } J = 8.4 \text{ Hz, 2H), 7.35 (m, 3H), 7.22(d, } J = 7.2 \text{ Hz, 1H), 2.27 (s, 3H) ppm.} \]

4-Methoxy-4'-nitrobiphenyl\[1\]
(lit.[97] m.p.: 107-108 °C); \[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 8.28 \text{ (d, } J = 8.8 \text{ Hz, 2H), 7.70 (d, } J = 8.8 \text{ Hz, 2H), 7.59 (d, } J = 8.4 \text{ Hz, 2H),7.03(d, } J = 8.8 \text{ Hz, 2H), 3.88(s, 3H) ppm.} \]

2-Methoxy-4'-nitrobiphenyl\[1\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 3.84(s, 3H), 7.01 -7.09(m, 2H), 7.26 -7.35(m, 2H), 7.38-7.43(m, 2H), 7.69(t, } J = 6.8 \text{ Hz,2H) ppm.} \]

4-Fluoro-4'-nitrobiphenyl\[2\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 7.19(t, } J = 8.4 \text{ Hz, 2H), 7.60(t, } J = 8.4 \text{ Hz, 2H), 7.69(d, } J = 8.4 \text{ Hz, 2H), 8.29(d, } J = 8.4 \text{ Hz, 2H) ppm.} \]

2,4-Dinitrobiphenyl\[3\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 8.69 \text{ (d, } J = 2.4 \text{ Hz, 1H), 8.47-8.45 (m, 1H), 7.69 (d, } J = 8.4 \text{ Hz, 1H), 7.48 (t, } J = 2.8 \text{ Hz, 3H), 7.35-7.33 (m, 2H) ppm.} \]

2,4-Dinitro-4'-fluorobiphenyl\[3\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 8.72 \text{ (d, } J = 2.4 \text{ Hz, 1H), 8.49-8.46 (m, 1H), 7.68 (d, } J = 8.4 \text{ Hz, 1H), 7.35-7.32 (m, 2H), 7.20 (t, } J = 8.0 \text{ Hz, 2H) ppm.} \]

2-Nitro-biphenyl\[1\]
\[^1\text{H} \text{NMR (400 MHz, CDCl}_3\text{, TMS): } \delta 7.85 \text{ (d, } J = 8 \text{ Hz, 1H), 7.61 (t, } J = 7.5 \text{ Hz, 1H),} \]
7.50-7.49 (m, 5H), 7.33-7.31 (m, 2H) ppm.

4-Cyanobiphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 7.72\) (m, 4H), 7.60 (d, \(J = 7.6\) Hz, 2H), 7.50 (t, \(J = 7.4\) Hz, 2H), 7.44 (t, \(J = 7.4\) Hz, 1H) ppm.

4-Methyl-4'-cyanobiphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 3.04\) (s, 3H), 7.28 (t, 2H), 7.49 (d, \(J = 8.0\) Hz, 2H), 7.68 (m, 4H) ppm.

4-Trifluoromethyl-biphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 7.69\) (s, 4H), 7.60 (d, \(J = 7.4\) Hz, 2H), 7.48 (t, \(J = 7.4\) Hz, 2H), 7.41 (t, \(J = 7.4\) Hz, 1H) ppm.

4-Methyl-4'-trifluoromethylbiphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 2.40\) (s, 3H), 7.26 (t, 2H), 7.39 (d, \(J = 8.0\) Hz, 2H), 7.67 (s, 4H) ppm.

3-Methoxy-biphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 7.60\) (d, \(J = 8.4\) Hz, 2H), 7.43 (t, \(J = 6.8\) Hz, 2H), 7.36 (m, 2H), 7.19 (d, \(J = 7.6\) Hz, 1H), 7.13 (s, 1H), 6.90 (d, \(J = 8.4\) Hz, 1H), 3.86 (s, 3H) ppm.

3-Methoxy-4-methylbiphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 7.49\) (d, \(J = 8.4\) Hz, 2H), 7.43 (t, \(J = 8.0\) Hz, 1H), 7.24 (d, \(J = 8.0\) Hz, 2H), 7.17 (d, \(J = 7.6\) Hz, 1H), 7.11 (s, 1H), 6.88 (t, \(J = 4.0\) Hz, 1H), 3.84 (s, 3H), 2.34 (s, 3H) ppm.

4-Acetylbiphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 8.04\) (d, \(J = 8.0\) Hz, 2H), 7.69 (d, \(J = 8.0\) Hz, 2H), 7.63 (d, \(J = 7.4\) Hz, 2H), 7.48 (t, \(J = 7.4\) Hz, 2H), 7.41 (t, \(J = 7.2\) Hz, 1H) ppm.

4-Methyl-4'-acetylbiphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\), TMS): \(\delta 8.03\) (d, \(J = 8.0\) Hz, 2H), 7.68 (d, \(J = 8.4\) Hz, 2H), 7.54 (d, \(J = 8.0\) Hz, 2H), 7.29 (d, \(J = 8.0\) Hz, 2H), 2.63 (s, 3H), 2.41 (s, 3H) ppm.

Biphenyl

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.59\) (d, \(J = 8.4\) Hz, 4H), 7.44 (t, \(J = 7.4\) Hz, 4H), 7.35 (t, \(J = 7.2\) Hz, 2H) ppm.
References
Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010
UV spectra of Pd at Different Stages

Figure 1

![UV spectra of Pd at Different Stages](image)

Figure 1 UV-vis absorption spectra of Pd(OAc)$_2$ (0.005 mmol) in DMF (a), and a mixture of 4-chloronitrobenzene (0.5 mmol), phenylboronic acid (0.75 mmol), Pd(OAc)$_2$ (0.5 mol%), K$_2$CO$_3$ (1 mmol) in EtOH/DMA (2:2mL) was stirred in air at 80 °C for 30 sec (b), and 1 min (c).

From the spectra, we can see that there was a peak at 400 nm assigned to Pd(II) (Figure 1, a). After stirring for 30 sec under the cross-coupling conditions, this peak completely disappeared, revealing the fast conversation of Pd(II) to Pd(0) (Figure 1, b).