Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Compound 4 1 1 D: Hanessian

1,3,2',6'-Tetraazido-sisomicin (4)
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Compound 6 1 l D: Hanessian

1,3,2'-Triazido-3'-N-Cbz-sisomicin 6'-aldehyde (6)
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

Compound 7 1 l D: Hanessian

1,3,2'-Triazido-3'-N-Cbz-6',6'-dimethoxy-sisomicin (7)
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Compound 8 2 1 D: Hanessian

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

*Aminoglycoside 66-40 C (2)" 3 1 D: Hanessian
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Aminoglycoside 66-40C (2) hydrolysis 21 1 D: Hanessian
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

1,3,2'-Triazido-6',6'-dimethoxy-sisamine (10)
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

5',6'-Dimethoxy-sisamine (S2)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

"Compound S2" 3 1 D: Hanessian

5',6'-Dimethoxy-samine (S2)

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010

6',6'-Dimethoxy-sisamine (S2)

Chemical Formula: C_{14}H_{27}N_{3}O_{6}
Exact Mass: 333.18999

\[[M + Na]^+ = 356.17866 (4.04 \text{ ppm}) \]
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

3-6'-Bis-imino-sisamine dimer (12)
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Compound 12 4 1 D: Hanessian

[Image of a graph or spectrum related to the study]
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin

Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2010

3-6' - Bis-imino-sisamine dimer (12)

Chemical Formula: C_{26}H_{38}N_{2}O_{9}

Exact Mass: 538.27511

$[M + H]^+ = 539.28239$ (-3.66 ppm)

$[M + Na]^+ = 561.26378$ (4.35 ppm)
Biomimetic synthesis and structural refinement of the macrocyclic dimer aminoglycoside 66-40C—the remarkably selective self-condensation of a putative aldehyde intermediate in the submerged culture medium producing sisomicin Stephen Hanessian* and Juan Pablo Maianti

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2010