Nichekl-catalyzed Tishchenko Reaction via Hetero-nickelacycles by Oxidative Cyclization of Aldehydes with Nickel(0) Complex
Sensuke Ogoshi,* Yoichi Hoshimoto and Masato Ohashi
Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka-565-0871, Japan.
ogoshi@chem.eng.osaka-u.ac.jp

Supporting Information

[General]
All manipulations were conducted under a nitrogen atmosphere using standard Schlenk or dry box techniques. 1H, 31P, and 13C nuclear magnetic resonance spectra were recorded on JEOL GSX–270S, JEOL AL–400, Brucker DPX 400, Brucker AVANCE 400 and Varian UNITY INOVA 600 spectrometers at 25 °C unless otherwise stated. The chemical shifts in 1H nuclear magnetic resonance spectra were recorded relative to Me$_4$Si or residual protiated solvent (C$_6$D$_5$H (δ 7.16) or C$_7$D$_7$H (δ 7.02 or 7.13)). The chemical shifts in the 13C spectra were recorded relative to Me$_4$Si. Assignment of the resonances in 1H and 13C NMR spectra was based on 1H–1H COSY, HMQC, and HMBC experiments. High resolution mass spectrometer (HRMS) and elemental analyses were performed at Instrumental Analysis Center, Faculty of Engineering, Osaka University. X-ray crystal data were collected by a Rigaku RAXIS–RAPID Imaging Plate diffractometer.

[Materials]
Toluene, C$_6$D$_6$, and toluene–d_8 were distilled from sodium benzophenone ketyl. All commercially available reagents were distilled and degassed prior to use. IPr (1,3–bis–(2,6–diisopropylphenyl)imidazol–2–ylidene), IPrCl (1,3–bis–(2,6–diisopropylphenyl) – 4,5–dichlorimidazol–2–ylidene) and 2-naphthaldehyde–d_1 were furnished by known procedures.1,2
[NMR-scale experiments (Table 1)]

To a solution of Ni(cod)$_2$ (5.5 mg, 0.020 mmol) and PCy$_3$ (11.2 mg, 0.040 mmol) in 0.50 mL of toluene-d_8 was added benzaldehyde (20.4 mg, 0.20 mmol) at 23 °C. The reaction mixture was heated at 100 °C for 24 h. The solution changed from red to orange. The reaction was monitored by 1H and 31P NMR. Benzyl benzoate and C1 (31P NMR: δ 41.7) were generated as red crystals (100% conversion vs Ni). Anal Calcd for C$_{72}$H$_{132}$NiOP (C1): C, 60.88; H, 9.38. Found: C, 61.34; H, 8.66.

To a solution of Ni(cod)$_2$ (5.5 mg, 0.020 mmol) and PCy$_3$ (5.6 mg, 0.020 mmol) in 0.50 mL of C$_6$D$_6$ was added benzyl benzoate (42.4 mg, 0.20 mmol) at 23 °C. The reaction mixture was heated at 80 °C for 60 h. The reaction was monitored by 1H and 31P NMR. C1 (31P NMR: δ 41.7) was not formed at all, but unidentified new peaks were observed in 1H and 31P NMR spectra of the crude reaction mixture.

To a solution of Ni(cod)$_2$ (5.5 mg, 0.020 mmol) and PCy$_3$ (5.6 mg, 0.020 mmol) in 0.50 mL of C$_6$D$_6$ was added benzyl benzoate (42.4 mg, 0.20 mmol) at 23 °C. The reaction mixture was heated at 80 °C for 60 h. The reaction was monitored by 1H and 31P NMR. C1 (31P NMR: δ 41.7) was not formed at all, but unidentified new peaks were observed in 1H and 31P NMR spectra of the crude reaction mixture.

To a solution of Ni(cod)$_2$ (11.0 mg, 0.040 mmol) and Ligand (0.040 mmol; IPr 15.5 mg or IPrCl 18.3 mg) in 0.50 mL of toluene-d_8 was added benzaldehyde (212.4 mg, 2.0 mmol or 414.8 mg, 4.0 mmol) at 23 °C. The reaction mixture was heated at 60 °C. The reaction was monitored by 1H NMR. Benzyl benzoate was obtained quantitatively.
[General experimental procedures of Ni(0)/IPrCl–catalyzed Tishchenko reaction (Table 2)]

To a solution of Ni(cod)₂ (11.0 mg, 0.040 mmol) and IPrCl (18.3 mg, 0.040 mmol) in 2 mL of toluene was added the aldehyde under inert atmosphere at 23 °C. The reaction mixture was heated at 60 °C or 80 °C for 1–24 h. The reaction was monitored by GC analysis. GC yields were determined using pentadecane as an internal standard. The product was isolated by a silica gel chromatography (eluted with EtOAc, unless otherwise noted). Spectroscopic data of the products (1, 6, 7, 8, 9, 10, 12, 13 and 14) were identical to that previously reported.³

[Spectroscopic data for prepared esters]

Benzyl benzoate (1):

The general procedure was followed with benzaldehyde (429.0 mg, 4.04 mmol) and reaction mixture was stirred at 60 °C for 3 h. Purification by column chromatography gave 1 (429.5 mg, 2.02 mmol, > 99%) as pale yellow oil.

2,4-Dimethylbenzyl 2,4-dimethylbenzoate (2):

The general procedure was followed with 2,4-dimethylbenzaldehyde (536.4 mg, 4.00 mmol) and reaction mixture was stirred at 60 °C for 3 h. Purification by column chromatography gave 2 (532.8 mg, 1.99 mmol, > 99%) as colorless oil. **¹H NMR** (400 MHz, CDCl₃): δ 7.85 (d, J = 8.0 Hz, 1H, ArH), 7.31 (d, J = 8.0 Hz, 1H, ArH), 7.04 (m, 4H, ArH), 5.31 (s, 2H, OCH₂Ar), 2.59 (s, 3H, C₃H₃), 2.39 (s, 3H, C₃H₃), 2.35 (s, 3H, C₃H₃), 2.34 (s, 3H, C₃H₃). **¹³C NMR** (100 MHz, CDCl₃): δ 167.5, 142.7, 140.7, 138.4, 137.1, 132.7, 131.4, 131.3, 131.1, 129.7, 126.8, 126.7, 126.6, 64.8, 22.0, 21.5, 21.2, 19.1. **HRMS**: Calcd. for C₁₈H₂₀O₂ 268.1463, Found 268.1465.

3,5-Dimethylbenzyl 3,5-dimethylbenzoate (3):
The general procedure was followed with 3,5-dimethylbenzaldehyde (542.8 mg, 4.05 mmol) and reaction mixture was stirred at 60 °C for 3 h. Purification by column chromatography gave 3 (531.5 mg, 1.98 mmol, > 99%) as colorless oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.75 (s, 2H, ArH), 7.22 (s, 1H, ArH), 7.11 (s, 2H, ArH), 7.02 (s, 1H, ArH), 5.33 (s, 2H, OCH\(_2\)Ar), 2.39 (s, 6H, CH\(_3\)). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 166.9, 138.2, 138.0, 136.1, 134.7, 130.2, 130.0, 127.5, 126.2, 66.8, 21.3, 21.2. HRMS: Calcd. for C\(_{18}\)H\(_{20}\)O\(_2\) 268.1463, Found 268.1458.

3,5-Di-tert-butylbenzyl 3,5-di-tert-butylbenzoate (5):

The general procedure was followed with 3,5-di-tert-butylbenzaldehyde (439.1 mg, 2.01 mmol) and reaction mixture was stirred at 80 °C for 2 h. Purification by column chromatography gave 5 (441.2 mg, 2.01 mmol, > 99%) as yellow oil. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 8.22 (s, 2H, ArH), 7.85 (s, 1H, ArH), 7.62 (s, 1H, ArH), 7.55 (s, 2H, ArH), 5.63 (s, 2H, OCH\(_2\)Ar), 1.55 (s, 36H, CH\(_3\)). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 167.0, 151.0, 150.9, 135.7, 129.9, 127.1, 124.0, 122.0, 121.9, 67.0, 34.9, 34.8, 31.6, 31.5. HRMS: Calcd. for C\(_{30}\)H\(_{44}\)O\(_2\) 436.3341, Found 436.3344.

4-Methoxybenzyl 4-methoxybenzoate (6):
The general procedure was followed with 4-methoxybenzaldehyde (274.3 mg, 2.01 mmol) and reaction mixture was stirred at 60 °C for 2 h. Purification by column chromatography gave 6 (260.8 mg, 1.92 mmol, 95%) as yellow oil.

4-(Trifluoromethyl)benzyl 4-(trifluoromethyl)benzoate (7):

The general procedure was followed with 4-trifluoromethylbenzaldehyde (69.8 mg, 0.40 mmol) and reaction mixture was stirred at 60 °C for 4 h. Purification by column chromatography gave 7 (61.4 mg, 0.18 mmol, 88% as crude yield). Further purification by recrystallization gave 7 (57.2 mg, 0.17 mmol, 82%) as colorless solid.

4-(Methoxycarbonyl)benzyl methyl terephthalate (8):

The general procedure was followed with 4-methoxycarbonylbenzaldehyde (329.6 mg, 2.01 mmol) and reaction mixture was stirred at 80 °C for 4 h. Purification by column chromatography gave 8 (324.7 mg, 0.99 mmol, 99%). Further purification by recrystallization gave 8 as colorless solid.

Naphthalen-2-ylmethyl 2-naphthoate (9):

The general procedure was followed with 2-naphthadehyde (208.6 mg, 1.34 mmol) and reaction mixture was stirred at 60 °C for 3 h. Purification by column chromatography gave 9 (195.8 mg, 0.63
mmol, 94% as crude yield). Further purification by recrystallization gave 8 (170.8 mg, 0.55 mmol, 82%) as colorless solid. NMR scale experiment was conducted followed by procedure noted in p S12.

Furfuryl furoate (10):

![Furfuryl furoate](image)

The general procedure was followed with furfural (192.2 mg, 2.00 mmol) and reaction mixture was stirred at 60 °C for 3 h. Purification by column chromatography gave 10 (118.6 mg, 0.62 mmol, 62%) as yellow oil. The yellow solid was produced as unidentified byproduct.

3,5,5-Trimethylhexyl 3,5,5-trimethylhexanoate (11):

![3,5,5-Trimethylhexyl 3,5,5-trimethylhexanoate](image)

The general procedure was followed with 3,5,5-trimethylhexanal (569.9 mg, 4.01 mmol) and reaction mixture was stirred at 60 °C for 1 h. Purification by column chromatography gave 11 (543.3 mg, 1.91 mmol, 96%) as colorless oil. This product was obtained as a diasteromer mixture 11/11’ (60/40, estimated by 1H NMR). 1H NMR (400 MHz, CDCl3): δ 4.09–4.05 (m, 2H of 11 and 11’, OCH₂CH₂), 2.31–2.29 (m, 1H of 11’ BuCH₂CH(Me)CH₂), 2.28–2.26 (m, 1H of 11, ‘BuCH₂CH(Me)CH₂), 2.13-2.03 (m, 2H), 1.63–1.59 (m, 2H), 1.44-1.42 (m, 1H), 1.25 (t, J = 4.0 Hz, 2H of 11’, ‘BuCH₂CH(Me)CH₂), 1.21 (t, J = 4 Hz, 2H of 11, ‘BuCH₂CH(Me)CH₂), 1.13–1.01 (ddd, 2H), 0.97 (d, J = 4.0 Hz, 3H of 11’, Me-H), 0.95 (d, J = 4.0 Hz, 3H of 11’, Me-H), 0.89 (s, 9H of 11 and 11’, ‘Bu-H), 0.87 (s, 9H of 11 and 11’, ‘Bu-H). 13C NMR (CDCl3, 67 MHz): δ 173.4, 62.8, 51.1 (11’), 51.1 (11), 50.7, 44.3, 38.0, 31.2, 30.2 (11’), 30.1 (11), 27.1 (11), 26.9 (11’), 26.3, 22.8 (11’), 22.8 (11), 22.7 (11), 22.6(11’). HRMS: Calcd. for C₁₈H₃₆O₂ 284.2715, Found 284.2713.

2-Ethylhexyl 2-ethylhexanoate (12):

![2-Ethylhexyl 2-ethylhexanoate](image)
The general procedure was followed with 2-ethylhexanal (519.3 mg, 4.05 mmol) and reaction mixture was stirred at 60 °C for 1 h. Purification by column chromatography gave 12 (483.3 mg, 1.88 mmol, 94%) as colorless oil.

Cyclohexylmethyl cyclohexanecarboxylate (13):

![Cyclohexylmethyl cyclohexanecarboxylate](image)

The general procedure was followed with cyclohexanecarbaldehyde (450.2 mg, 4.01 mmol) and reaction mixture was stirred at 60 °C for 1 h. Purification by column chromatography gave 13 (451.5 mg, 2.01 mmol, 99%) as colorless oil.

Neopentyl pivalate (Scheme 2, Entry 14):

![Neopentyl pivalate](image)

The general procedure was followed with pivalaldehyde (442 uL, 344.8 mg, 4.00 mmol) and reaction mixture was stirred at 60 °C for 1 h. Neopentyl pivalate (14) is difficult to isolate because of its low boiling point. Therefore, product yield was determined by GC.
[Mechanistic investigations]

NMR Monitoring of the Tishchenko reaction of 2-naphthaldehyde:

To a solution of Ni(cod)$_2$ (110.0 mg, 0.40 mmol) and IPrCl (183.2 mg, 0.40 mmol) in 2 mL of toluene-d_8 was added 2-naphthaldehyde (312.4 mg, 2.00 mmol) at 23 °C and the sample was transferred to an NMR tube equipped with a sealable teflon cap. The tube was sealed and inserted in a NMR spectrometer. The 1H NMR analysis was conducted at 25 °C (NMR S1) and then the sample was cooled to -60 °C. After the measurement of 1H NMR (NMR S2), 13C NMR (NMR S3) and HMBC (NMR S4) at -60 °C, the sample was allowed to warm to 25 °C. Then, 1H NMR analysis was conducted at 25 °C again to verify that the reaction is not proceeded from when the first 1H NMR analysis had been conducted at 25 °C. The reaction at room temperature was monitored by 1H NMR for 1 d and the 2-naphthaldehyde was consumed to the give corresponding ester quantitatively. Spectral data for C2: 1H NMR (600 MHz, toluene-d_8, -60 °C): δ 4.70 (brs, 2H, ArCHO), 3.12 (br, 2H, 1Pr-H), 2.97 (br, 2H, 1Pr-H), 1.61 (br, 6H, 1Pr-H), 1.17 (br, 6H, 1Pr-H), 1.07 (br, 6H, 1Pr-H), 1.02 (br, 6H, 1Pr-H). 13C NMR (150 MHz, toluene-d_8): δ 196.0, 109.3, 29.6, 28.8, 24.8, 24.3, 24.0, 23.6.
NMR Monitoring of the Tishchenko reaction of 2-naphthaldehyde-\textit{d}_1:

To a solution of Ni(cod)$_2$ (110.0 mg, 0.40 mmol) and IPrCl (183.2 mg, 0.40 mmol) in 2 mL of toluene-\textit{d}_8 was added 2-naphthaldehyde-\textit{d}_1 (314.4 mg, 2.00 mmol) at 23 °C and the sample was transferred to an NMR tube equipped with a sealable teflon cap. The tube was sealed and inserted in a NMR spectrometer. The 1H NMR analysis was conducted at 25 °C and then the sample was cooled to -60 °C. After the measurement of 1H NMR (NMR S5) and 13C NMR (NMR S6) at -60 °C, the sample was allowed to warm to 25 °C. Then, 1H NMR analysis was conducted at 25 °C again to verify that the reaction is not proceeded from when the first 1H NMR analysis had been conducted at 25 °C.
[Determination of reaction rate constant and KIE]

For all kinetic analyses, each measurement was repeated at least twice.

Reaction rate constant of the Tishchenko reaction of 2-naphthaldehyde, \(k_{H} \):

To a solution of Ni(cod)\(_2\) (11.0 mg, 0.040 mmol) and IPrCl (18.3 mg, 0.040 mmol) in 0.5 mL of C\(_6\)D\(_6\) was added 2-naphthaldehyde (206.2 mg, 1.32 mmol) and 1,4-dioxane (39.5 mg, 0.45 mmol) as an internal standard at 25 °C. The reaction mixture was thermostated at 60 °C, and then the integral values at \(\delta_{H} 8.12 \text{ ppm} \) and 3.32 ppm, the resonances attributable to the aromatic proton in 9 and to 1,4-dioxane, respectively, were monitored periodically (every 5 minutes) by means of \(^1\text{H}\) NMR spectroscopy (Table S1). The rate constant of disappearance of C\(_{10}\)H\(_7\)CHO (\(k_{H} \)) was evaluated by least-squares fitting of the conversion-time profiles to a zero-order rate equation (eq. S1).

\[
-d[C_{10}H_7CHO]/dt = k_{H} = 3.55(3) \times 10^{-4} \text{ [mol m}^{-3}\text{-sec}^{-1}]
\]

Reaction rate constant of the Tishchenko reaction of 2-naphthaldehyde-\(d_1\), \(k_{D} \):

To a solution of Ni(cod)\(_2\) (11.0 mg, 0.040 mmol) and IPrCl (18.3 mg, 0.040 mmol) in 0.5 mL of C\(_6\)D\(_6\) was added 2-naphthaldehyde-\(d_1\) (207.5 mg, 1.32 mmol) and 1,4-dioxane (40.5 mg, 0.46 mmol) as an internal standard at 25 °C. The reaction mixture was thermostated at 60 °C, and then the integral values at \(\delta_{H} 8.12 \text{ ppm} \) and 3.32 ppm, the resonances attributable to the aromatic proton in 9 and to 1,4-dioxane, respectively, were monitored periodically (every 5 minutes) by means of \(^1\text{H}\) NMR spectroscopy (Table S2). The rate constant of disappearance of C\(_{10}\)H\(_7\)CDO (\(k_{D} \)) was evaluated by least-squares fitting of the conversion-time profiles to a zero-order rate equation (eq. S2).

\[
-d[C_{10}H_7CDO]/dt = k_{D} = 1.87(1) \times 10^{-4} \text{ [mol m}^{-3}\text{-sec}^{-1}]
\]
where \([C_{10}H_7CDO] = [C_{10}H_7CDO]_0 - 2[9-d_2]_t\), \([C_{10}H_7CDO]_0 = 1.180(4) \text{ mol m}^{-3}\)

([C_{10}H_7CDO]_0 means the concentration of [C_{10}H_7CDO] at \(t = 0\).)

These two experiments show a KIE value of reaction rate \((k_H/k_D = 3.55 \times 10^{-4}/1.87 \times 10^{-4} = 1.9)\).

Table S1

<table>
<thead>
<tr>
<th>([C_{10}H_7CHO]) (10^{-3}·mol·m^{-3})</th>
<th>(t) (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.14</td>
<td>3500</td>
</tr>
<tr>
<td>0.12</td>
<td>3000</td>
</tr>
<tr>
<td>0.10</td>
<td>2500</td>
</tr>
<tr>
<td>0.08</td>
<td>2000</td>
</tr>
<tr>
<td>0.06</td>
<td>1500</td>
</tr>
<tr>
<td>0.04</td>
<td>1000</td>
</tr>
<tr>
<td>0.02</td>
<td>500</td>
</tr>
<tr>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

\([C_{10}H_7CHO] = -3.55(3) \times 10^{-4}t + 1.169(5)\)

\(R^2 = 0.999\)
Table S2

$$[C_{10}H_7CDO] = -1.87(1) \times 10^{-4} t + 1.180(4)$$

$$R^2 = 0.999$$

References

2,4-dimethylbenzyl 2,4-dimethylbenzoate

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010
Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2010

3,5-dimethylbenzyl 3,5-dimethylbenzoate

[Chemical structure diagram]
3,5-dimethylbenzyl 3,5-dimethylbenzoate
2,4,6-trimethylbenzyl 2,4,6-trimethylbenzoate

\HD300G\share\hoshimoto\H-NMR after\R.600-R.699\R.611\1HNMR CD3CL.als
2,4,6-trimethylbenzyl 2,4,6-trimethylbenzoate

\HD300G\share\hoshimoto\H-NMR after\R.600-R.699\R.611\13CNMR CD3CL.als
3,5-di-tert-butylbenzyl 3,5-di-tert-butylbenzoate
3,5-di-tert-butylbenzyl 3,5-di-tert-butylbenzoate
3,5,5-trimethylhexyl 3,5,5-trimethylhexanoate