Electronic Supporting Information

A pH-responsive fluorescence probe and photosensitizer based on a
tetraamino silicon(IV) phthalocyanine

Xiong-Jie Jiang, Pui-Chi Lo, Sin-Lui Yeung, Wing-Ping Fong and Dennis K. P. Ng*

Department of Chemistry, Department of Biochemistry and Centre of Novel Functional
Molecules, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Table of Contents

Experimental Section S3

Fig. S1 UV-Vis spectra of 1-3 in DMF. S9

Fig. S2 UV-Vis spectra of 1-3 in water (with 0.1% DMF). S9

Fig. S3 Fluorescence spectra of 1-3 in DMF. S10

Fig. S4 Fluorescence spectra of 1-3 in water (with 0.1% DMF). S10

Table S1 Electronic absorption and photophysical data for 1-3 in DMF. S11

Fig. S5 Comparison of the rates of photodegradation of DPBF in DMF using 1-3 and ZnPc as the photosensitisers. S12

Fig. S6 UV-Vis spectra of 1 in citrate buffer solutions with different pH. S12

Fig. S7 Effects of metal ions on the fluorescence intensity of 1 in citrate buffer solution at pH 5.0 or 7.4. S13

Fig. S8 Confocal fluorescence images of HT29 cells after incubation with 1-3. S13

Fig. S9 Comparison of the rates of photodegradation of DPBF in DMF using 1 as the photosensitiser, both in the absence and presence of HCl. S14

Fig. S10 Cytotoxic effects of 1-3 on HepG2 cells in the absence and presence of light S15

Fig. S11 Cytotoxic effects of 1-3 on HT29 cells in the absence and presence of light S16

1H and 13C{1H} spectra of 1-3 S17
Experimental Section

Materials and Methods. All the reactions were performed under an atmosphere of nitrogen. N,N-Dimethylformamide (DMF), pyridine and toluene were distilled from barium oxide, calcium hydride and sodium respectively. All other solvents and reagents were of reagent grade and used as received.

1H and 13C{1H} NMR spectra were recorded on a Bruker DPX 300 spectrometer (1H, 300; 13C, 75.4 MHZ) in CDCl$_3$, CD$_3$OD or DMSO-d$_6$. Spectra were referenced internally using the residual solvent (1H: δ 3.31 for CD$_3$OD, δ 2.49 for DMSO-d$_6$; 13C: δ 77.0 for CDCl$_3$, δ 39.5 for DMSO-d$_6$) resonances relative to SiMe$_4$. Electrospray ionisation (ESI) mass spectra were recorded on a Thermo Finnigan MAT 95 XL mass spectrometer. Elemental analyses were performed by the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China.

UV-Vis and steady-state fluorescence spectra were taken on a Cary 5G UV-Vis-NIR spectrophotometer and a Hitachi F-4500 spectrofluorometer respectively. The fluorescence quantum yields of the samples [Φ_F(sample)] were determined by the equation: Φ_F(sample) = ($F_{\text{sample}}/F_{\text{ref}}$)($A_{\text{ref}}/A_{\text{sample}}$)($n_{\text{sample}}^2/n_{\text{ref}}^2$)$\Phi_F$(ref)R_1 where F, A and n are the measured fluorescence (area under the emission peak), the absorbance at the excitation position (610 nm) and the refractive index of the solvent respectively. The unsubstituted zinc(II) phthalocyanine (ZnPc) in DMF was used as the reference [Φ_F(ref) = 0.28]R_2. To minimise re-absorption of radiation by the ground-state species, the emission spectra were obtained in very dilute solutions where the absorbance at 610 nm was about 0.03. The singlet oxygen quantum yields (Φ_Δ) were measured in DMF by the method of chemical quenching of 1,3-diphenylisobenzofuran (DPBF) using ZnPc as the reference (Φ_Δ = 0.56)R_3.

S3
The reactive oxygen species (ROS) generation efficiency of 1 was examined in citrate buffer solutions with pH at 5.0, 6.0, 7.4 and 8.0. A mixture of 1 (4 µM) and dihydroethidium (20 µM) in the buffer (3 mL) was prepared in a quartz cell. Its fluorescence spectra (λ_{ex} = 465 nm, λ_{em} = 500-700 nm due to the oxidised product) were recorded immediately after irradiation with red light for every 5 seconds. The light source consisted of a 100 W halogen lamp and a colour glass filter (Newport) cut-on 610 nm. The rate of oxidation of dihydroethidium, which reflects the ROS generation efficiency of 1, was monitored for a total of 30-second irradiation.

Preparation of Phthalocyanine 1. A mixture of 2-[[2-(dimethylamino)ethyl]methylamino]ethanol (0.42 g, 2.87 mmol), silicon(IV) phthalocyanine dichloride (0.22 g, 0.36 mmol) and pyridine (0.5 mL) in toluene (15 mL) was heated under reflux for 4 h. After cooling, the solvent was evaporated *in vacuo.* The residue was washed with water (500 mL) and hexane (250 mL), then dissolved in CH_2Cl_2 (100 mL) and dried over anhydrous Na_2SO_4. After evaporation, the product was obtained as a blue solid (0.24 g, 81%). \(^1\)H NMR (CD_3OD): δ 9.69-9.72 (m, 8 H, Pc-H_α), 8.45-8.48 (m, 8 H, Pc-H_β), 1.59 (s, 12 H, CH_3), 1.09 (virtual t, \(J = 7.5 \text{ Hz}, 4 \text{ H, CH}_2\)), 0.69 (virtual t, \(J = 7.5 \text{ Hz}, 4 \text{ H, CH}_2\)), 0.41 (s, 6 H, CH_3), -0.63 (t, \(J = 6.0 \text{ Hz}, 4 \text{ H, CH}_2\)), -1.91 (t, \(J = 6.0 \text{ Hz}, 4 \text{ H, OCH}_2\)). \(^{13}\)C{\(^1\)H}NMR (CDCl_3): δ 149.2, 136.0, 130.8, 123.6, 56.6, 56.3, 54.2, 53.1, 45.1, 41.3. HRMS (ESI): \(m/z\) calcd for C\(_{46}\)H\(_{50}\)N\(_{12}\)NaO\(_2\)Si \([\text{M+Na}]^+\) 853.3841, found 853.3842. Anal. Calcd for C\(_{46}\)H\(_{50}\)N\(_{12}\)O\(_2\)Si: C, 66.48; H, 6.06; N, 20.22. Found: C, 66.23; H, 6.02; N, 20.16.

Preparation of Phthalocyanine 2. A mixture of 1 (0.16 g, 0.19 mmol) and iodomethane (0.29 g, 2.04 mmol) in CHCl\(_3\) was stirred at room temp. for 5 min. The
resulting green precipitate was collected by filtration, washed thoroughly with CHCl₃ and THF, and dried in vacuo (0.17 g, 79%). ¹H NMR (DMSO-d₆): δ 9.67-9.70 (m, 8 H, Pc-H₄), 8.52-8.55 (m, 8 H, Pc-H₆), 2.18 (s, 18 H, CH₃), 2.14 (virtual t, J = 6.9 Hz, 4 H, CH₂), 0.95 (virtual t, J = 6.9 Hz, 4 H, CH₂), 0.11 (s, 6 H, CH₃), -0.74 (t, J = 5.7 Hz, 4 H, CH₂), -2.06 (t, J = 5.7 Hz, 4 H, OCH₂). ¹³C{¹H}NMR (DMSO-d₆): δ 148.8, 134.9, 132.2, 123.7, 60.4, 55.0, 52.5, 51.8, 49.7. HRMS (ESI): m/z calcd for C₄₈H₅₆N₁₂O₂Si [M-2I]²⁺ 430.2204, found 430.2208. Anal. Calcd for C₄₈H₅₈I₂N₁₂O₃Si (2 H₂O): C, 50.89; H, 5.16; N, 14.84. Found: C, 50.51; H, 5.48; N, 14.50.

Preparation of Phthalocyanine 3. A mixture of 2 (0.11 g, 0.10 mmol) and iodomethane (2.84 g, 0.02 mol) in DMF (10 mL) was stirred at room temp. for 1 h. The mixture was then poured into diethyl ether (100 mL) to give a green precipitate, which was filtered, washed thoroughly with CHCl₃, THF and diethyl ether, and dried in vacuo (0.13 g, 90%). ¹H NMR (DMSO-d₆): δ 9.73-9.76 (m, 8 H, Pc-H₄), 8.58-8.60 (m, 8 H, Pc-H₆), 2.60 (virtual t, J = 7.5 Hz, 4 H, CH₂), 2.45 (s, 18 H, CH₃), 2.06 (virtual t, J = 7.5 Hz, 4 H, CH₂), 0.76 (s, 12 H, CH₃), 0.56 (virtual s, 4 H, CH₂), -1.73 (virtual s, 4 H, OCH₂); ¹³C{¹H}NMR (DMSO-d₆): δ 148.9, 134.7, 132.5, 124.0, 62.6, 55.7, 55.5, 52.2, 49.2, 48.2. HRMS (ESI): m/z calcd for C₆₀H₆₂N₁₂O₂Si [M-4I]⁴⁺ 222.6217, found 222.6218. Anal. Calcd for C₅₀H₇₀I₄N₁₂O₆Si (3·4H₂O): C, 40.83; H, 4.80; N, 11.43. Found: C, 41.14; H, 4.93; N, 11.37.

Cell Lines and Culture Conditions. The HT29 human colorectal carcinoma cells (from ATCC, no. HTB-38) were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Invitrogen, no.10313-021) supplemented with fetal calf serum (10%), penicillin-streptomycin (100 units mL⁻¹ and 100 µg mL⁻¹ respectively), L-
glutamine (2 mM) and transferrin (10 µg mL\(^{-1}\)). The HepG2 human hepatocarcinoma cells (from ATCC, no. HB-8065) were maintained in RPMI medium 1640 (Invitrogen, no. 23400-021) supplemented with fetal calf serum (10%) and penicillin-streptomycin (100 units mL\(^{-1}\) and 100 µg mL\(^{-1}\) respectively). Approximately \(3 \times 10^4\) (for HT29) or \(4 \times 10^4\) (for HepG2) cells per well in these media were inoculated in 96-multiwell plates and incubated overnight at 37 °C in a humidified 5% CO\(_2\) atmosphere.

Cellular Uptake Studies. About 6.0 \(\times 10^4\) HT29 cells in the culture medium (2 mL) were seeded on a coverslip and incubated overnight at 37 °C under 5% CO\(_2\). The medium was then removed. The cells were incubated with a solution of 1-3 in the medium (2 µM for 1, 8 µM for 2 and 3, 2 mL) for 2 h under the same conditions. Then the cells were rinsed with phosphate buffered saline (PBS) and viewed with a Leica SP5 confocal microscope equipped with a 633 nm helium neon laser. Phthalocyanines 1-3 were excited at 633 nm and their emission was monitored at 640-700 nm. The images were digitised and analysed by Leica Application Suite Advanced Fluorescence.

pH-Dependent Intracellular Fluorescence Studies. About 1.2 \(\times 10^5\) HT29 cells in the growth medium (2 mL) were seeded on a coverslip and incubated overnight at 37 °C under 5% CO\(_2\). The medium was removed, then the cells were incubated with a solution of phthalocyanine 1 in the medium (0.5 µM, 2 mL) for 30 min under the same conditions. The cells were then rinsed with PBS and incubated with nigericin (Sigma) in PBS (25 µM, 2 mL) at different pH (5.0, 6.0 and 7.4) for
further 20 min. The cells were viewed with a Leica SP5 confocal microscope equipped with a 633 nm helium neon laser. Emission signals from 640-700 nm (gain = 750 V) were collected and the images were digitised and analysed by Leica Application Suite Advanced Fluorescence. The intracellular fluorescence intensities (totally 25 cells for each pH solution) were also determined.

Photocytotoxicity Assay. Phthalocyanines 1-3 were first dissolved in DMF to give 1.6 mM solutions, which were diluted to appropriate concentrations with the culture medium. The cells, after being rinsed with PBS, were incubated with 100 µL of these phthalocyanine solutions for 2 h at 37 °C under 5% CO₂. The cells were then rinsed again with PBS and refed with 100 µL of the culture medium before being illuminated at ambient temperature. The light source consisted of a 300 W halogen lamp, a water tank for cooling and a colour glass filter (Newport) cut-on 610 nm. The fluence rate ($\lambda > 610$ nm) was 40 mW cm⁻². An illumination of 20 min led to a total fluence of 48 J cm⁻².

Cell viability was determined by means of the colourimetric MTT assay. After illumination, the cells were incubated at 37 °C under 5% CO₂ overnight. An MTT (Sigma) solution in PBS (3 mg mL⁻¹, 50 µL) was added to each well followed by incubation for 2 h under the same environment. A solution of sodium dodecyl sulfate (Sigma; 10% by weight, 50 µL) was then added to each well. The plate was incubated in an oven at 60 °C for 30 min, then 80 µL of *iso*-propanol was added to each well. The plate was agitated on a Bio-Rad microplate reader at ambient temperature for 10 s before the absorbance at 540 nm at each well was taken. The average absorbance of the blank wells, which did not contain the cells, was subtracted from the readings of the other wells. The cell viability was then determined by the
following equation: \(\% \text{ viability} = \left[\frac{\sum(A_i/A_{\text{control}} \times 100)}{n} \right] \), where \(A_i \) is the absorbance of the \(i \)th data \((i = 1, 2, ..., n)\), \(A_{\text{control}} \) is the average absorbance of the control wells in which the phthalocyanine was absent, and \(n (= 4) \) is the number of the data points.

References

Fig. S1 UV-Vis spectra of 1-3 (2 µM) in DMF.

Fig. S2 UV-Vis spectra of 1-3 (2 µM) in water (with 0.1% DMF).
Fig. S3 Fluorescence spectra of 1-3 (1 μM) in DMF (excited at 610 nm).

Fig. S4 Fluorescence spectra of 1-3 (1 μM) in water (with 0.1% DMF) (excited at 610 nm).
Table S1 Electronic absorption and photophysical data for 1-3 in DMF.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm) (log ε)</th>
<th>λ_{em} (nm)a</th>
<th>Φ_F^b</th>
<th>Φ_Δ^c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>354 (4.87), 606 (4.57), 644 (4.51), 674 (5.36)</td>
<td>676</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>357 (4.90), 607 (4.58), 647 (4.50), 676 (5.36)</td>
<td>679</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>346 (4.85), 610 (4.53), 678 (5.28)</td>
<td>681</td>
<td>0.35</td>
<td>0.37</td>
</tr>
</tbody>
</table>

a Excited at 610 nm. b Using ZnPc in DMF as the reference ($\Phi_F = 0.28$). c Using ZnPc as the reference ($\Phi_\Delta = 0.56$ in DMF).
Fig. S5 Comparison of the rates of photodegradation of DPBF in DMF as monitored spectroscopically at 411 nm with time, using 1-3 and ZnPc (2 μM) as the photosensitiser. The data for null photosensitiser are also given as a control.

Fig. S6 UV-Vis spectra of 1 (2 μM) in citrate buffer solutions with different pH.
Fig. S7 Effects of metal ions (100 \(\mu \text{M} \)) on the fluorescence intensity of 1 (2 \(\mu \text{M} \)) in citrate buffer solution at pH 5.0 or 7.4.

Fig. S8 Confocal fluorescence images of HT29 cells after incubation with 1 (2 \(\mu \text{M} \)), 2 (8 \(\mu \text{M} \)) and 3 (8 \(\mu \text{M} \)), respectively, for 2 h.
Fig. S9 Comparison of the rates of photodegradation of DPBF in DMF as monitored spectroscopically at 411 nm with time, using 1 (2 μM) as the photosensitiser, both in the absence and presence of HCl. The data for null photosensitiser are also given as a control.
Fig. S10 Cytotoxic effects of 1 (squares), 2 (triangles) and 3 (stars) on HepG2 cells in the absence (closed symbols) and presence (open symbols) of light ($\lambda > 610$ nm, 40 mW cm$^{-2}$, 48 J cm$^{-2}$). Data are expressed as mean values ± standard error of the means of three independent experiments, each performed in quadruplicate.
Fig. S11 Cytotoxic effects of 1 (squares), 2 (triangles) and 3 (stars) on HT29 cells in the absence (closed symbols) and presence (open symbols) of light ($\lambda > 610$ nm, 40 mW cm$^{-2}$, 48 J cm$^{-2}$). Data are expressed as mean values ± standard error of the means of three independent experiments, each performed in quadruplicate.
1H NMR spectrum of 1 in CD$_3$OD

13C{1H} NMR spectrum of 1 in CDCl$_3$
1H NMR spectrum of 2 in DMSO-d$_6$

13C{1H} NMR spectrum of 2 in DMSO-d$_6$
1H NMR spectrum of 3 in DMSO-d$_6$

13C$\{^1$H$\}$ NMR spectrum of 3 in DMSO-d$_6$