Supplementary Information

Non-Hydrogen-Bonding-Based, Solvent-Dependent Helix Inversion Between Pure P-Helix and Pure M-Helix in Poly(quinoxaline-2,3-diyl)s Bearing Chiral Side Chains

Tetsuya Yamada,a Yuuya Nagata,a and Michinori Suginome a,b*

aDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
bJST, CREST (Creation of Next-Generation Nanosystems through Process Integration), Sanbancho, Chiyodaku, Tokyo, 102-0075, Japan

Contents

1. General
2. Experimental Procedures
3. Analytical and NMR Data for New Compounds
4. Determination of the Screw-Sense Excess
5. CD and UV Spectra of the Polymers
1. General

All reactions were carried out under an atmosphere of nitrogen with magnetic stirring. 1H and 13C NMR spectra were recorded on a Varian Mercury vx400 or a JEOL JNM-A500 spectrometer at ambient temperature. 1H NMR data are reported as follows: chemical shift in ppm downfield from tetramethylsilane (δ scale), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, m = multiplet, and br = broad), coupling constant (Hz), and integration. 13C NMR chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). All 13C NMR spectra were obtained with complete proton decoupling. CD spectra were recorded on a JASCO J-750 spectrometer. UV spectra were recorded on a JASCO V-500 spectrometer. The GPC analysis was carried out with TSKgel G4000HHR (CHCl$_3$, polystyrene standard). Preparative GPC was performed on JAI LC-908 equipped with JAIGEL-1H and -2H columns in a series (CHCl$_3$).

THF was dried and deoxygenized using an alumina/catalyst column system (GlassContour Co.). Trimethylphenylphosphine (Aldrich) and sodium borohydride (Aldrich) were used as received from the commercial sources. Achiral monomer 1 and chiral monomers (R)- and (S)-2 and achiral nickel initiator were prepared according to the reported procedures.
2. Experimental Procedures

Synthesis of Monomer (R)-2

\[\text{O} \text{H}_2 \text{N} \text{H}_2 \text{O} \text{H}_2 \text{N} \text{H}_2 \quad 1) \text{AcOCHO, CH}_2\text{Cl}_2 \quad 2) \text{POCl}_3, \text{Et}_3\text{N, CH}_2\text{Cl}_2 \quad \text{NC} \text{NC} \quad \text{O} \text{O} \quad \text{O} \text{O} \]

To a CH\(_2\text{Cl}_2\) (25 mL) solution of 1,2-amino-3,6-dimethyl-4,5-bis((R)-2-butoxy-methyl)benzene ((R)-S1, 1.64 g, 5.32 mmol) was added acetylformate (1.5 mL, 21 mmol) at 0°C. The mixture was stirred for 15 h with gradual warming up to rt. The mixture containing 1,2-diformamido-3,6-dimethyl-4,5-bis((R)-2-butoxy)methyl)benzene was subjected to evaporation of volatile materials in vacuo and used for the next step without further purification. To a CH\(_2\text{Cl}_2\) (50 mL) suspension of the diformamide and Et\(_3\)N (7.8 mL, 55 mmol) cooled to 0°C, POCl\(_3\) (1.6 mL, 17 mmol) was added. After stirring for 1 h at 0°C, saturated NaHCO\(_3\) aq. was added to the reaction mixture. Extraction with CH\(_2\text{Cl}_2\) followed by column chromatography on silica gel (hexane:ether = 5:1) gave (R)-2 as white solid (1.00 g, 57% yield).

Typical Procedures for the Synthesis of Poly(quinoline-2,3-diyl)s

Synthesis of copolymer poly-1/(R)-2(20/20): A THF solution of o-TolNiCl(PMe\(_3\))\(_2\) (0.050 M, 50 μL, 2.5 μmol) was diluted with THF (3.85 mL). To the solution was added a solution of PMe\(_3\) in THF (1.0 M, 2.5 μL, 2.5 μmol). After stirring for 15 minutes, a solution of monomer 1 (15.0 mg, 50 μmol) and (R)-2 (16.4 mg, 50 μmol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of o-TolMgBr (1.0M, 50 μL, 50 μmol) was added to the reaction mixture at room temperature. After stirring for 15 min. at room temperature, water was added. Extraction with CHCl\(_3\) followed by preparative GPC gave poly-1/(R)-2(20/20) as orange solid (29 mg, 92% yield).

Synthesis of homopolymer poly-(R)-2: A THF solution of o-TolNiCl(PMe\(_3\))\(_2\) (0.050 M, 50 μL, 2.5 μmol) was diluted with THF (3.85 mL). To the solution was added a solution of
PMe₃ in THF (1.0 M, 2.5 µL, 2.5 µmol). After stirring for 15 minutes, a solution of (R)-2 (32.8 mg, 100 µmol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of o-TolMgBr (1.0M, 50 µL, 50 µmol) was added to the reaction mixture at room temperature. After stirring for 15 min. at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave poly-(R)-2 as orange solid (31 mg, 95% yield).

Synthesis of homopolymer poly-(R)-2(100): A THF solution of o-TolNiCl(PMe₃)₂ (0.050 M, 20 µL, 1.0 µmol) was diluted with THF (3.85 mL). To the solution was added a solution of PMe₃ in THF (1.0 M, 2.5 µL, 2.5 µmol). After stirring for 15 minutes, a solution of (R)-2 (32.8 mg, 100 µmol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of o-TolMgBr (1.0M, 50 µL, 50 µmol) was added to the reaction mixture at room temperature. After stirring for 15 minutes at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave poly-(R)-2(100) as orange solid (29 mg, 95% yield).

Synthesis of homopolymer poly-(R)-2(200): A THF solution of o-TolNiCl(PMe₃)₂ (0.050 M, 10 µL, 0.50 µmol) was diluted with THF (3.85 mL). To the solution was added a solution of PMe₃ in THF (1.0 M, 2.5 µL, 2.5 µmol). After stirring for 15 min., a solution of (R)-2 (32.8 mg, 100 µmol) in THF (1.25 mL) was added at room temperature. After 3 h, a THF solution of o-TolMgBr (1.0 M, 50 µL, 50 µmol) was added to the reaction mixture at room temperature. After stirring for 15 min. at room temperature, water was added. Extraction with CHCl₃ followed by preparative GPC gave poly-(R)-2 as orange solid (27 mg, 95% yield).

Procedure for the CD measurements in 1,1,2-TCE/CHCl₃ Solution (Figure 2)

Mixed solvents for the CD measurements were prepared by mixing CHCl₃ and 1,1,2-TCE by volume. The volume was measured with measuring cylinder.

poly-(R)-2 (1.98 mg) was dissolved in CHCl₃ in 10 mL measuring flask. A 1 mL portion of
the solution was transferred into other 10 mL measuring flasks by use of measuring pipette (1 mL). Chloroform in these flasks were evaporated in vacuo 3 h at room temperature. Each flask containing dried poly-(R)-2 (0.198 mg) was filled with the mixed solvent. After leaving the solution at room temperature for 3 h, the solutions were subjected to CD and UV/Vis measurements.
3. Analytical and NMR Data for New Compounds

Monomer (\(R\))- and (\(S\))-2

(\(R\))-2: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.93 (t, 7.6Hz, 6H), 1.24 (d, 6.4Hz, 6H), 1.45-1.65 (m, 4H), 2.49 (s, 6H), 3.49 (sex, 6.0 Hz, 2H), 4.44 (d, 10.4 Hz, 2H), 4.59 (d, 10.4 Hz, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 9.9, 15.5, 19.1, 29.2, 64.0, 77.7, 123.9, 134.1, 138.3, 172.8; IR (KBr) 2122 cm\(^{-1}\); Anal. Calcd. for C\(_{20}\)H\(_{28}\)N\(_2\)O\(_2\): C, 73.14; H, 8.59; N, 8.53. Found: C, 73.29; H, 8.75; N, 8.57; [\(\alpha\)]\(D\) -29.6 (CHCl\(_3\), c = 0.49).

(S)-2; [\(\alpha\)]\(D\) +29.0 (CHCl\(_3\), c = 0.49).

Monomer (\(S\))-3

(\(S\))-3: \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.91 (t, 7.2Hz, 6H), 0.99 (d, 6.4Hz, 6H), 1.18-1.50 (m, 10H), 2.39 (s, 6H), 2.55 (dt, 4.8Hz, 12.8Hz, 2H), 2.65 (dt, 4.8Hz, 12.8Hz, 2H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) \(\delta\) 11.4, 15.7, 19.0, 27.9, 29.2, 35.3, 36.6, 122.0, 131.6, 142.0, 171.4; IR (neat) 2116 cm\(^{-1}\); HRMS Calcd. For C\(_{22}\)H\(_{32}\)N\(_2\): 324.2565. Found 324.2566.; [\(\alpha\)]\(D\) +11.6 (CHCl\(_3\), c = 0.50).
1H NMR of (S)-3

13C NMR of (S)-3
Properties of Homopolymers (poly-1, poly-(R)-2 and poly-(S)-2) and Random Copolymers (poly-1/(R)-2 and poly-1/(S)-2)

Table S1. Properties of Homopolymers (poly-1 and poly-(R)-2) and Random Copolymers poly-1/(R)-2

<table>
<thead>
<tr>
<th>polymer</th>
<th>yield (%)</th>
<th>$M_n/10^4$</th>
<th>M_w/M_n</th>
<th>$g_{abs}^{366}/10^{-3}$ (CHCl$_3$)</th>
<th>$g_{abs}^{366}/10^{-3}$ (1,1,2-TCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly-1</td>
<td>86</td>
<td>6.8</td>
<td>1.08</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>poly-1/2(95/5)</td>
<td>88</td>
<td>7.5</td>
<td>1.07</td>
<td>0.56</td>
<td>-0.39</td>
</tr>
<tr>
<td>poly-1/2(90/10)</td>
<td>91</td>
<td>7.7</td>
<td>1.07</td>
<td>1.07</td>
<td>-0.67</td>
</tr>
<tr>
<td>poly-1/2(80/20)</td>
<td>87</td>
<td>7.7</td>
<td>1.08</td>
<td>1.76</td>
<td>-1.49</td>
</tr>
<tr>
<td>poly-1/2(70/30)</td>
<td>93</td>
<td>8.2</td>
<td>1.08</td>
<td>2.13</td>
<td>-1.81</td>
</tr>
<tr>
<td>poly-1/2(50/50)</td>
<td>92</td>
<td>7.9</td>
<td>1.08</td>
<td>2.38</td>
<td>-2.49</td>
</tr>
<tr>
<td>poly-1/2(30/70)</td>
<td>88</td>
<td>7.9</td>
<td>1.09</td>
<td>2.34</td>
<td>-2.78</td>
</tr>
<tr>
<td>poly-2</td>
<td>95</td>
<td>7.9</td>
<td>1.07</td>
<td>2.36</td>
<td>-2.81</td>
</tr>
<tr>
<td>poly-2(100)</td>
<td>87</td>
<td>28</td>
<td>1.06</td>
<td>2.47</td>
<td>$^{\mathrm{a}}$</td>
</tr>
<tr>
<td>poly-2(200)</td>
<td>83</td>
<td>58</td>
<td>1.04</td>
<td>2.51</td>
<td>$^{\mathrm{a}}$</td>
</tr>
</tbody>
</table>

a) not determined due to the poor solubility.

Table S2. Properties of Homopolymer poly-(S)-2 and Random Copolymers poly-1/(S)-2

<table>
<thead>
<tr>
<th>polymer</th>
<th>yield (%)</th>
<th>$M_n/10^4$</th>
<th>M_w/M_n</th>
<th>$g_{abs}^{366}/10^{-3}$ (CHCl$_3$)</th>
<th>$g_{abs}^{366}/10^{-3}$ (1,1,2-TCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly-1/2(90/10)</td>
<td>94</td>
<td>6.8</td>
<td>1.08</td>
<td>-1.03</td>
<td>0.71</td>
</tr>
<tr>
<td>poly-1/2(80/20)</td>
<td>91</td>
<td>7.5</td>
<td>1.07</td>
<td>-1.82</td>
<td>1.59</td>
</tr>
<tr>
<td>poly-1/2(70/30)</td>
<td>89</td>
<td>7.7</td>
<td>1.07</td>
<td>-2.14</td>
<td>2.13</td>
</tr>
<tr>
<td>poly-1/2(50/50)</td>
<td>86</td>
<td>7.7</td>
<td>1.08</td>
<td>-2.34</td>
<td>2.50</td>
</tr>
<tr>
<td>poly-2</td>
<td>91</td>
<td>8.2</td>
<td>1.08</td>
<td>-2.45</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Table S3. Properties of Homopolymer poly-(S)-3

<table>
<thead>
<tr>
<th>polymer</th>
<th>yield (%)</th>
<th>$M_n/10^4$</th>
<th>M_w/M_n</th>
<th>$g_{abs}^{366}/10^{-3}$ (CHCl$_3$)</th>
<th>$g_{abs}^{366}/10^{-3}$ (1,1,2-TCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly-(S)-3</td>
<td>88</td>
<td>5.6</td>
<td>1.17</td>
<td>-0.32</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Homopolymer poly-1: 1H NMR (400MHz, CDCl$_3$) δ 0.88 (brs, 6nH), 1.59 (brs, 4nH), 2.34 (brs, 6nH), 3.46 (brs, 4nH), 4.58 (brs, 2nH), 4.63 (brs, 2nH), 7.1-7.4 (brm, 6H), 7.85 (brs, 2H).

Homopolymer poly-2: 1H NMR (400MHz, CDCl$_3$) δ 0.88 (brs, 6nH), 1.21 (brs, 6nH), 1.44
(bss, 2nH), 1.53 (bss, 2nH), 1.59 (bss, 4nH), 2.31 (bss, 6nH), 3.40 (bss, 2nH), 4.53 (bss, 2nH), 4.62 (bss, 2nH), 7.1-7.4 (brm, 6H), 7.85 (bss, 2H).

Random Copolymers **poly-1/(R)-2(x/y)** and **poly-1/(S)-2(x/y)** (x + y = 40): 1H NMR (400MHz, CDCl$_3$) δ 0.88 (bss, (6x+6y)H), 1.21 (bss, 6yH), 1.44 (bss, 2yH), 1.53 (bss, (4x+2y)H), 2.30 (bss, (6x+6y)H), 3.41 (bss, (4x+2y)H), 4.54 (bss, (2x+2y)H), 4.62 (bss, (2x+2y)H), 7.1-7.4 (brm, 6H), 7.85 (bss, 2H).

Homopolymer **poly-3**: 1H NMR (400MHz, CDCl$_3$) δ 0.86 (bss, 12nH), 1.18 (bss, 4nH), 1.26 (bss, 6nH), 1.36 (bss, 6nH), 2.22 (bss, 2nH), 2.61 (bss, 2nH).

Molar ratios of the achiral and chiral monomer units (x:y) can be estimated from the integral ratio of the signals at δ 2.30 (= 240H) and δ 1.21 as shown below. The integral ratio of the two signals (δ 1.21 and δ 2.30) directly reflects the ratio of the two monomers.

The following graphs demonstrate a linear relationship of the feeding ratio and the NMR integral ratio for **poly-1/(R)-2(x/y)** (top) and **poly-1/(S)-2(x/y)** (bottom).
Table S3. Ratio of the integral value of δ 2.30 and δ 1.21 in random copolymers using (R)-2

<table>
<thead>
<tr>
<th>content of (R)-2</th>
<th>ratio of integral value (H^c/H^a+H^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.05</td>
<td>0.09</td>
</tr>
<tr>
<td>0.1</td>
<td>0.16</td>
</tr>
<tr>
<td>0.2</td>
<td>0.25</td>
</tr>
<tr>
<td>0.3</td>
<td>0.34</td>
</tr>
<tr>
<td>0.5</td>
<td>0.57</td>
</tr>
<tr>
<td>0.7</td>
<td>0.72</td>
</tr>
<tr>
<td>1</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Figure S1. Relationship of the content of (R)-2 and the ratio of the integral value

y = 1.086x
R_2 = 0.991

Table S4. Ratio of the integral value of δ 2.30 and δ 1.21 in random copolymers using (S)-2

<table>
<thead>
<tr>
<th>content of (S)-2</th>
<th>ratio of integral value (H^c/H^a+H^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.15</td>
</tr>
<tr>
<td>0.2</td>
<td>0.30</td>
</tr>
<tr>
<td>0.3</td>
<td>0.37</td>
</tr>
<tr>
<td>0.5</td>
<td>0.55</td>
</tr>
<tr>
<td>1</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Figure S2. Relationship of the content of (S)-2 and the ratio of the integral value

y = 1.063x
R_2 = 0.978
4. Determination of the screw-sense excess

The screw-sense excesses of the polymers were determined by CD spectra and UV/vis absorption spectra. Here we used the dissymmetry factor $g_{abs} \left(\Delta \varepsilon / \varepsilon \right)$\(^1\) to avoid the effects of the concentration errors of the polymer solutions. Firstly, the percent screw-sense excess se was defined as

$$se = \frac{[P]-[M]}{[P]+[M]} \times 100$$ \hspace{1cm} (1)

where $[P]$ and $[M]$ are molar concentrations of P and M helical polymers. In other words, positive se means a P-enriched state and negative se represents M-enriched state for practical convenience. The screw-sense excess is directly proportional to g_{abs}: the screw-sense excess could therefore be obtained as a product of g_{abs} and the proportionality factor F.

$$se = F \times g_{abs}$$ \hspace{1cm} (2)

On the other hand, the ratio of the molar concentrations of purely M and P helical polymers is given by the Boltzmann distribution using the energy difference per monomer unit E_h between the P- and M-helices, the number of chiral unit N (40 to -40, positive number means the number of (R) monomer units and negative number represents the number of (S) monomer units), the gas constant R (8.31447 J·K\(^{-1}\)·mol\(^{-1}\)), and temperature T (298 K) as previously reported.

$$\frac{[P]}{[M]} = \exp\left(\frac{E_h N}{RT}\right)$$ \hspace{1cm} (3)

Therefore, the screw-sense excess is expressed as follows.

$$se = \tanh\left(\frac{E_h N}{2RT}\right)$$ \hspace{1cm} (4)

Nonlinear least-squares fitting of the screw-sense excess se against the number of the chiral unit N was performed by using the Solver Function in Microsoft Office Excel 2007. Sums of the squares of the deviation were minimized by varying the proportionality factor F and the energy difference per monomer unit E_h. These parameters were successfully converged.

and the final values were as follows.

\[F = 4.1785 \times 10^4, \quad E_h -0.5909 \text{ kJ mol}^{-1} \quad (5) \]

To evaluate the validity of the obtained value of \(F \), the difference of the energy between \(P \) and \(M \) helices \(\Delta G \), which was obtained from \(F \) and \(g_{abs} \), were plotted against the number of chiral unit \(N \). Ideally, \(\Delta G \) is proportional to the number of chiral unit \(N \), and the gradient represents the energy difference per monomer unit \(E_h \).

\[\Delta G = G^P - G^M = E_h N = \text{arctanh}(F \times g_{abs})/2RT \quad (6) \]

The relationships between \(\Delta G \) and \(N \) (12 - -12) with varied \(F \) (4.1785\(\times 10^4 \) - 4.1785\(\times 10^4 \times 0.80 \)) are shown in Figure S3. Only the region where \(N \) is between 12 and -12 is shown, because the values of \(g_{abs} \) for \(|N| > 12\) are too large to evaluate \(\Delta G \) accurately. In this region, the effect of the measurement error is not negligible due to the nature of arc hyperbolic tangent function. Goodness of fit, as measured by Pearson R\(^2\), is greater than 0.999 when \(F \) is 4.1785\(\times 10^4 \). Smaller \(F \) makes the line sigmoidal, and the linearity was not obtained.

Figure S3. The relationships between \(\Delta G \) and \(N \) with varied \(F \).
5. CD and UV Spectra of the Polymers

Figure S4. UV/vis absorption spectrum and CD spectrum of poly-1 in CHCl$_3$ (1.82 × 10$^{-2}$ g/L).

Figure S5. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(38/2) in CHCl$_3$ (2.46 × 10$^{-2}$ g/L).
Figure S6. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(36/4) in CHCl₃ (1.53 × 10⁻² g/L).

Figure S7. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(32/8) in CHCl₃ (1.79 × 10⁻² g/L).
Figure S8. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(28/12) in CHCl₃ (1.49 × 10⁻² g/L).

![Absorbance and Ellipticity Graph](image)

Figure S9. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(20/20) in CHCl₃ (2.31 × 10⁻² g/L).

![Absorbance and Ellipticity Graph](image)
Figure S10. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(12/28) in CHCl$_3$ (2.56 x 10$^{-2}$ g/L).

![Absorbance and Ellipticity](image)

Figure S11. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in CHCl$_3$ (2.39 x 10$^{-2}$ g/L).

![Absorbance and Ellipticity](image)
Figure S12. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(36/4) in CHCl$_3$ (2.19 × 10$^{-2}$ g/L).

Figure S13. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(32/8) in CHCl$_3$ (1.85 × 10$^{-2}$ g/L).
Figure S14. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(28/12) in CHCl₃ (2.72 × 10⁻² g/L).

Figure S15. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(20/20) in CHCl₃ (2.91 × 10⁻² g/L).
Figure S16. UV/vis absorption spectrum and CD spectrum of poly-(S)-2 in CHCl₃ (2.54 × 10⁻² g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(S)-2 in CHCl₃](image)

Figure S17. UV/vis absorption spectrum and CD spectrum of poly-(R)-2(100) in CHCl₃ (1.60 × 10⁻² g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2(100) in CHCl₃](image)
Figure S18. UV/vis absorption spectrum and CD spectrum of poly-(R)-2(200) in CHCl$_3$ (2.32 \times 10^{-2}$ g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2(200) in CHCl$_3$](image)

Figure S19. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl$_3$ (20:80, v/v, 2.00 \times 10^{-2}$ g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl$_3$](image)
Figure S20. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl$_3$ (30:70, v/v, 1.98×10^{-2} g/L).

Figure S21. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl$_3$ (40:60, v/v, 1.98×10^{-2} g/L).
Figure S22. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (50:50, v/v, 1.45 × 10⁻² g/L).

![UV/vis absorption spectrum and CD spectrum](image)

Figure S23. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (55:45, v/v, 1.45 × 10⁻² g/L).

![UV/vis absorption spectrum and CD spectrum](image)
Figure S24. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (60:40, v/v, 1.45 × 10⁻² g/L).

Figure S25. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (70:30, v/v, 1.98 × 10⁻² g/L).
Figure S26. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (80:20, v/v, 1.98 × 10⁻² g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (80:20, v/v, 1.98 × 10⁻² g/L).](image)

Figure S27. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (90:10, v/v, 1.98 × 10⁻² g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane/CHCl₃ (90:10, v/v, 1.98 × 10⁻² g/L).](image)
Figure S28. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,2-Trichloroethane (2.01 × 10^{-2} g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2](image)

Figure S29. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(12/28) in 1,1,2-Trichloroethane (1.47 × 10^{-2} g/L).

![UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(12/28)](image)
Figure S30. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(20/20) in 1,1,2-Trichloroethane (2.32 × 10^{-2} g/L).

![Graph](image)

Figure S31. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(28/12) in 1,1,2-Trichloroethane (1.84 × 10^{-2} g/L).

![Graph](image)
Figure S32. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(32/8) in 1,1,2-Trichloroethane (2.17 × 10^{-2} g/L).

Figure S33. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(36/4) in 1,1,2-Trichloroethane (1.60 × 10^{-2} g/L).
Figure S34. UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(38/2) in 1,1,2-Trichloroethane (1.31 × 10^{-2} g/L).

![UV/vis absorption spectrum and CD spectrum of poly-1/(R)-2(38/2)](image)

Figure S35. UV/vis absorption spectrum and CD spectrum of poly-1 in 1,1,2-Trichloroethane (1.82 × 10^{-2} g/L).

![UV/vis absorption spectrum and CD spectrum of poly-1](image)
Figure S36. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(36/4) in 1,1,2-Trichloroethane (1.86 × 10⁻² g/L).

Figure S37. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(32/8) in 1,1,2-Trichloroethane (2.10× 10⁻² g/L).
Figure S38. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(28/12) in 1,1,2-Trichloroethane (2.36 × 10⁻² g/L).

Figure S39. UV/vis absorption spectrum and CD spectrum of poly-1/(S)-2(20/20) in 1,1,2-Trichloroethane (1.34 × 10⁻² g/L).
Figure S40. UV/vis absorption spectrum and CD spectrum of poly-(S)-2 in 1,1,2-Trichloroethane (1.86 × 10^{-2} g/L).

Figure S41. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in dichloromethane (1.95 × 10^{-2} g/L).
Figure S42. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in tetrahydrofuran (2.41 × 10⁻² g/L).

Figure S43. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1-butanol (1.66 × 10⁻² g/L).
Figure S44. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,1-trichloroethane (1.40 × 10^{-2} g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,1,1-trichloroethane](image)

Figure S45. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1-chlorobutane (1.73 × 10^{-2} g/L).

![UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1-chlorobutane](image)
Figure S46. UV/vis absorption spectrum and CD spectrum of poly-(R)-2(100) in 1-chlorobutane (1.73 × 10^{-2} g/L).

Figure S47. UV/vis absorption spectrum and CD spectrum of poly-(R)-2(200) in 1-chlorobutane (0.99 × 10^{-2} g/L).
Figure S48. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1-bromobutane (1.77 × 10^{-2} g/L).

![Figure S48](image1)

Figure S49. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in valeronitrile (2.10 × 10^{-2} g/L).

![Figure S49](image2)
Figure S50. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,2-dichloroetane (2.33 × 10⁻² g/L).

Figure S51. UV/vis absorption spectrum and CD spectrum of poly-(R)-2 in 1,3-dichloropropane (1.81 × 10⁻² g/L).