Development of a phosphine oxide-catalysed Appel reaction

Ross M. Denton*, An Jie and Beatrice Adeniran

School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK

ross.denton@nottingham.ac.uk

Conents

1.0 General experimental

2.0 General procedure for chlorination of alcohols and calculation of yields using tetrachlorethane and relevant NMR spectra

2.1 Data for chlorides

2.2 Experimental methods and data for new compounds

3.0 NMR spectra

4.0 References

1.0 General experimental

Glassware was dried in an oven overnight before use. Thin layer chromatography was carried out on Polgram SIL G/_{UV254} silica-aluminium plates and plates were visualised using ultra-violet light (254 nm) and KMnO₄ solution. For flash column chromatography Fluorochem silica gel 60, 35-70 μ was used. NMR data was collected at either 270, or 400 MHz. Data was manipulated directly from the spectrometer or via a networked PC with appropriate software. All samples were analysed in CDCl₃ unless otherwise stated. Reference values for residual solvent was taken as $\delta = 7.27$ (CDCl₃) for ¹H-NMR; $\delta = 77.16$ (CDCl₃) for ¹³C-NMR. Multiplicities for coupled signals designated using the following abbreviations: s=singlet, d=doublet, t=triplet, q=quartet, quin=quintet, sex=sextet, br=broad signal, ap=apparent and are given in Hz. ¹³C multiplicities were assigned using a DEPT sequence. Where appropriate, COSY, HMQC and HMBC experiments were performed to aid assignment. High-resolution mass spectrometric data are quoted to four decimal places (0.1 mDa) with error limits for acceptance of +/-5.0 ppm (defined as calcd./found mass 10⁻⁶). Mass spectra were acquired on a VG micromass 70E, VG autospec or micromass LCTOF. Infrared data was collected using sodium chloride discs or via analysis of neat samples using an ATR accessory. All solvents and reagents were used as supplied.

2.0 General experimental method for the chlorination of alcohols (Table 2)

To a solution of triphenylphosphine oxide (42 mg, 0.15 mmol) in either CHCl₃ or CDCl₃ (1.5 mL) was was added oxalyl chloride (0.012 mL, 0.142 mmol) and the reaction mixture stirred for 5 min. The appropriate alcohol (1.00 eq.) and oxalyl chloride (0.073 mL, 0.863 mmol) as solutions in either CHCl₃ or CDCl₃ (1.0 mL) were then added simultanesouly over 7 h *via* syringe pump. The solvent was removed *in vacuo*. The yield was determined using the procedure below:

The crude reaction mixture was dissolved in $CDCl_3$ and transferred to a volumetric flask (two washings of the original flask were done after transfer) that was subsequently made up to the correct volume with further $CDCl_3$. To a 1 mL aliquot of this solution was added tetrachloroethane (accurately approximately 30-80 mg). The ¹H NMR spectrum was recorded and the mass of the product calculated according to the equation below:

 $mass_{Cl} = (area_{Cl}/area_{standard}) \cdot (MW_{Cl}/MW_{standard}) \cdot mass_{standard} \cdot purity factor \cdot n \cdot m$

where n corrects for the amount of the crude reaction mixture used and m corrects for the number of protons associated with the resonance used. The integral of the proton(s) adjacent to Cl was used in all cases. See example spectrum of crude reaction mixture plus internal standard for compound **14** below. Note that the volatility of certain chlorides as well as difficulties in observation *via* TLC resulted in some loss of material during evaporation and purification.

Further purification by flash chromatography (silica, 5-10 % Et_2O /pet. ether) gave the pure chlorides.

Data for chlorides is given below. NMR spectra are included for those chlorides that were further purified by flash column chromatography. Ether/petroleum ether 40-60 (5:95) was used as an eluent. Silica gel was used as the stationary phase.

2.1 Data for chlorides

1-chlorodecane 6^1 (147 mg, 83 % by NMR) further purification *via* flash chromatography afforded **5** as a colourless oil (120 mg, 68 %); ¹H NMR (400 MHz, CDCl₃) δ 0.91 (3H, t, *J* 6.8, CH₃), 1.23-1.50 (14H, m, 7xCH₂), 1.79 (2H, q, *J* 6.8, CH₂CH₂Cl), 3.55 (2H, t, *J* 6.8 CH₂Cl); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 22.7 (CH₂), 26.9 (CH₂), 28.9 (CH₂), 29.3 (CH₂), 29.5 (CH₂), 31.9 (CH₂), 32.7 (CH₂), 45.1 (CH₂).

Benzylchloride 9² (101 mg, 80 % by NMR) further purification *via* flash chromatography afforded **9** as a colourless oil (53 mg, 42 %);¹H NMR (270 MHz, CDCl₃) δ 4.62 (2H, s, CH₂), 7.30-7.43 (5H, m, Ar*H*); ¹³C NMR (67.5 MHz, CDCl₃) δ 46.4 (CH₂), 128.5 (CH), 128.7 (CH), 128.9 (CH), 137.6 (Cq).

2-chlorooctane 14³ (103 mg, 69 % by NMR) further purification *via* flash chromatography afforded **14** as a colourless oil (80 mg, 54 %);¹H NMR (400 MHz, CDCl₃) δ 0.90 (3H, t, *J* 6.7, CH₃), 1.28-1.48 (8H, m, 4xCH₂), 1.52 (3H, d, *J* 6.5, CH₃), 4.04 (1H, q, *J* 6.5, CHCl); ¹³C NMR (100 MHz, CDCl₃) δ 14.3 (CH₃), 22.6 (CH₂), 25.4 (CH₂), 26.6 (CH₂), 28.8 (CH₂), 31.7 (CH₂), 41.4 (CH₂), 58.9 (CH₂).

3-phenylpropylchloride 10⁴ (113 mg, 73 % by NMR) ¹H NMR (400 MHz, CDCl₃) δ 2.16 (2H, q, *J* 6.4, PhCH₂CH₂CH₂Cl), 2.84 (2H, q, *J* 6.4, PhCH₂CH₂CH₂Cl), 3.58 (2H, t, *J* 6.4, PhCH₂CH₂CH₂Cl), 7.21-7.30 (3H, m, Ar*H*), 7.31-7.40 (2H, m, Ar*H*); ¹³C NMR (100 MHz, CDCl₃) δ 32.8 (CH₂), 34.1 (CH₂), 44.3 (CH₂), 126.2 (CH), 128.6 (CH), 128.7 (CH), 140.8 (Cq).

1-chloro-2-decyne 13⁵ (113 mg, 67 % by NMR) further purification *via* flash chromatography afforded **14** as a colourless oil (90 mg, 52 %); ¹H NMR (400 MHz, CDCl₃) δ 0.91 (3H, t, *J* 6.8, CH₃), 1.22-1.44 (8H, m, 4xCH₂), 1.50 (2H, q, *J* 8.4, CH₂CH₂CH₂CC), 2.22 (2H, m, CH₂CH₂CC), 4.15 (2H, t, *J* 2.4, CCCH₂Cl); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 18.8 (CH₂), 22.6 (CH₂), 28.4 (CH₂), 28.8 (2xCH₂), 31.3 (CH₂), 31.7 (CH₂), 74.9 (Cq), 87.8 (Cq).

1-chloro-2-butene 11⁶ (64 mg, 70 % by NMR); ¹H NMR (400 MHz, CDCl₃) δ 1.75 (3H, d, *J* 6.4, CH₃), 4.05 (2H, d, *J* 7.0, CH₂Cl), 5.68 (1H, dq *J* 15.0 and 6.4 CH₃CHCHCH₂Cl), 5.82 (1H, dt, *J* 15.0 and 6.6 CH₃CHCHCH₂Cl); ¹³C NMR (100 MHz, CDCl₃) δ 17.7 (CH₃), 45.4 (CH₂), 129.1 (CH), 130.1 (CH).

2-chloro-1-octene 16⁷ (94 mg, 64 % by NMR); ¹H NMR (400 MHz, CDCl₃) δ 0.92 (3H, t, *J* 6.9, CH₃), 1.28-1.55 (6H, m, 3xCH₂), 1.61-1.91 (2H, m, CClHCH₂CH₂), 4.36 (1H, m, CHCl), 5.14 (1H, d, J 10.1 CH₂CHCHCl), 5.27 (1H, d, J 16.8, CH₂CHCHCl), 5.90 (1H, ddd, *J* 16.8, 10.1 and 7.0, CH₂CHCHCl); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (CH₃), 22.6 (CH₂), 26.1 (CH₂), 31.2 (CH₂), 45.5 (CH₂), 63.2 (CH₂), 114.4 (CH), 141.43 (CH).

cinnamylchloride 12² (134 mg, 88 % by NMR); ¹H NMR (400 MHz, CDCl₃) δ 4.29 (2H, d, *J* 6.9, CH₂), 6.36 (1H, dt, 15.6 and 7.2, CHCH₂Cl), 6.69 (1H, d, 15.6, PhCHCH), 7.30-7.49 (5H, m, ArH); ¹³C NMR (100 MHz, CDCl₃) δ 45.5 (CH₂), 125.0 (CH), 126.7 (CH), 128.5 (CH), 128.7 (CH), 134.2 (CH), 136.4 (Cq).

1-bromodecane 17⁸ (106 mg, 42 % by NMR) further purification *via* flash chromatography afforded **14** as a colourless oil (52 mg, 24 %)

¹H NMR (400 MHz, CDCl₃) δ 0.91 (3H, t, *J* 6.9, *CH*₃), 1.23-1.50 (14 H, m, 7x*CH*₂), 1.88 (2H, q, *J* 7.0, *CH*₂CH₂Br), 3.44 (2H, t, *J* 6.9, *CH*₂Br); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 22.7 (CH₂), 28.2 (CH₂), 28.8 (CH₂), 29.3 (CH₂), 29.5 (2xCH₂), 31.9 (CH₂), 32.9 (CH₂), 34.0 (CH₂).

2.2 Experimental Procedures and data for new compounds

Bisoxalylester 8

An authentic sample was prepared for analysis:

To a solution of oxalyl chloride (63 mg, 0.50 mmol) was added decanol (158 mg, 1.00 mmol). The reaction mixture was stirred at room temperature for 2 h. The solvent was removed in *vacuo* affording bisoxalylester **8** (175 mg, 94 %) as a white solid.

IR v_{max} (CDCl₃) 2928 (CH), 1763 (CO), 1739, (CO), 1467, 1318, 1185 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (3H, t, *J* 6.9, *CH*₃), 1.23-1.49 (14H, m, 7xC*H*₂), 1.75 (2H, q, *J* 6.8, *CH*₂CH₂O), 4.30 (2H, t, *J* 6.8 *CH*₂O); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 22.7 (CH₂), 25.7 (CH₂), 28.3 (CH₂), 29.2 (CH₂), 29.3 (CH₂), 22.7 (CH₂), 29.5 (2 CH₂), 31.9 (CH₂), 67.2 (CH₂), 158.1 (Cq); HRMS (EI⁺) C₂₂H₄₂O₄ calcd. 370.3083, found 370.3077.

Chloroglyoxalylate 7

An authentic sample was prepared for analysis:

To a solution of oxalyl chloride (127 mg, 1.00 mmol) was added decanol (158 mg, 1.00 mmol) *via* syringe pump over 2 h. The solvent was removed *in vacuo* affording chloroglyoxalylate 7 (229 mg, 92 %) as a colourless oil.

IR v_{max} (CDCl₃) 2909 (CH), 1780 (CO), 1467, 1378 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (3H, t, *J* 6.4, *CH*₃), 1.23-1.50 (14H, m, 7xCH₂), 1.78 (2H, q, *J* 6.8, *CH*₂CH₂O), 4.36 (2H, t, *J* 6.8 CH₂O); ¹³C NMR (100 MHz, CDCl₃) δ 14.1 (CH₃), 22.6 (CH₂), 25.6 (CH₂), 28.7 (CH₂), 29.1 (CH₂), 29.3 (CH₂), 29.4 (CH₂), 29.5 (CH₂), 31.9 (CH₂), 69.1 (CH₂), 155.8 (Cq), 161.0 (Cq). HRMS was obtained on the corresponding acid (EI⁺) C₁₂H₂₁O₂ [M⁺-CO₂H] calcd. 185.1542, found 185.1543.

3.0 NMR spectra

Chlorodecane 6

Benzylchloride 9

1-chloro-2-decyne 13

2-chlorooctane 14

NMR below shows a representative crude reaction mixture $+ C_2H_2Cl_4$ for determination of yield.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

10

4.0 References

- 1. F. Gonzalez-Bobes and G. C. Fu, J. Am. Chem. Soc., 2006, 128, 5360.
- 2. B. D. Kelly and T. H. Lambert, J. Am. Chem. Soc., 2009, 131, 13930.
- 3. W. Pluempanupat and W. Chavasiri, Tetrahedron Lett., 2006, 47, 682.
- 4. S. Crosignani, B. Nadal, Z. Li and B. Linclau, Chem. Comm. 2003, 260.
- 5. M. Kelly, R. Ross, Jr. and D. H. Young, US Pat. 253 708, 2009
- 6. D.P. Phillion, WO Pat. 3 020 684, 2003.
- 7. R. J. Fox, G. Lalic and R. G. Bergman, J. Am. Chem. Soc., 2007, 129, 14144.
- 8. J. Terao, Y. Naitoh, H. Kuniyasu and N. Kambe, Chem. Comm. 2007, 825.