Supporting Information

Rational synthesis, enrichment, and ¹³C NMR spectra of endohedral C₆₀ and C₇₀ encapsulating a helium atom

Yuta Morinaka,^a Fumiyuki Tanabe, ^a Michihisa Murata,^a Yasujiro Murata,^{*a} and Koichi Komatsu^{*ab}

^aInstitute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan ^bDepartment of Environmental and Biological Chemistry, Fukui University of Technology, Gakuen, Fukui 910-8505, Japan

Contents

	Page
General	S3
Computational Method	S3
Synthesis of C_{60} derivative He@4 with a 12-membered-ring opening	S4
Synthesis of C_{60} derivative He@5 with an 8-membered-ring opening	S6
Synthesis of He@C ₆₀	S8
Synthesis of C_{70} derivative He@7 with a 12-membered-ring opening	S10
Synthesis of C_{70} derivative He@8 with an 8-membered-ring opening	S12
Synthesis of He@C ₇₀	S14
Optimized Geometries	S16
References	S31
	General Computational Method Synthesis of C_{60} derivative He@4 with a 12-membered-ring opening Synthesis of C_{60} derivative He@5 with an 8-membered-ring opening Synthesis of He@C_{60} Synthesis of C_{70} derivative He@7 with a 12-membered-ring opening Synthesis of C_{70} derivative He@8 with an 8-membered-ring opening Synthesis of He@C_{70} Optimized Geometries References

Complete Reference 20. Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J.
C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.
Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L.
Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc.,
Wallingford CT, 2004.

1. General

The ¹H and ¹³C NMR measurements were carried out with a Varian Mercury 300 instrument and a JEOL AL-400 instrument. The NMR chemical shifts are reported in ppm with reference to residual protons and carbons of CDCl₃ (δ 7.26 ppm in ¹H NMR, δ 77.0 ppm in ¹³C NMR), CD₂Cl₂ (δ 5.32 ppm in ¹H NMR, δ 53.5 ppm in ¹³C NMR), acetone-*d*₆ (δ 2.04 ppm in ¹H NMR), benzene-*d*₆ (δ 7.20 ppm in ¹H NMR), and 1,2-dichlorobenzene-*d*₄ (ODCB-*d*₄) (δ 132.35 ppm in ¹³C NMR). FAB mass spectra were recorded on a JEOL MStation JMS-700. APCI mass spectra were measured on a Finnigan-MAT TSQ 7000 spectrometer. The high-pressure liquid chromatography (HPLC) was performed with the use of a Cosmosil Buckyprep column (250 mm length, 4.6-mm inner diameter) for analytical purpose, and the same column (two directly connected columns; 250 mm length, 20 mm inner diameter) for preparative purpose. ODCB-*d*₄ was purchased from Aldrich Co. Zinc (sandy, 99.9%), titanium (IV) chloride, carbon disulfide (CS₂), benzene, and tetrahydrofuran (THF) were purchased from Wako Pure Chemical Industries, Ltd, and THF was distilled from sodium benzophenone ketyl under argon before use.

2. Computational Method

All calculations were conducted with Gaussian 03 packages. The structures were fully optimized with the MPWB1K functional and 6-31G** basis set without any symmetry assumptions.

A powder of cage-opened C₆₀ derivative **3** (600 mg, 0.553 mmol) wrapped in aluminum foil was heated at 115 °C in an autoclave under pressurized He gas (1230 atm) for 1 h. This high pressure (1230 atm) was generated by (i) introducing He gas (100 atm) into the autoclave, (ii) elevating the pressure up to 1050 atm by the use of a hydraulic compressor at room temperature, and (iii) heating the autoclave at 115 °C. After cooling to ambient temperature, the resulting powder was recovered from the autoclave and dissolved in benzene (1 L). The solution was irradiated with high-pressure mercury lamp for 1.5 h at room temperature through Pyrex glass. The solvent was removed *in vacuo* and the residual brown solid was subjected to flash column chromatography over silica gel. Elution with toluene-EtOAc (20:1) gave He@4/4 (3/7) (158.8 mg, 0.153 mmol, 28%) as a brown solid, and following elution with toluene-EtOAc (5:1) gave unreacted **3** (307.4 mg, 0.284 mmol, 51%). The following NMR spectra were identical to the reported ones for empty compound.¹

He@4/4 (3/7): ¹H NMR (300 MHz, CS₂-acetone- d_6 (7:1)) δ 8.52 (m, 1H), 8.32 (m, 1H), 7.98-8.08 (m, 3H), 7.85 (m, 1H), 7.03-7.39 (m, 8H); ¹³C NMR (75 MHz, CS₂-CDCl₃ (1:1)) δ 196.35, 189.11, 167.75, 161.87, 149.74, 148.48, 148.48, 148.43, 148.24, 147.63, 147.54, 147.52, 147.18, 147.14, 146.57, 146.24, 146.24, 146.06, 145.91, 145.75, 145.68, 145.57, 145.47, 145.42, 145.41, 145.18, 145.08, 145.03, 144.89, 144.56, 144.41, 144.03, 143.92, 143.72, 143.08, 142.59, 142.38, 142.15, 141.78, 141.64, 141.31, 140.98, 140.76, 140.45, 140.20, 140.11, 139.92, 139.79, 139.55, 139.45, 139.35, 139.32, 138.47, 137.50, 137.11, 137.02, 137.02, 136.13, 135.57, 133.07, 132.60, 131.24, 130.85, 130.34, 129.93, 129.88, 129.65, 129.11, 128.89, 128.89, 128.57, 127.48, 127.48, 127.42, 126.94, 123.15, 122.65, 75.06, 52.44.

Fig. S1. ¹H NMR (300 MHz, CS₂-acetone- d_6 (7:1)) spectrum of He@4/4 (3/7).

Fig. S3. APCI-MS spectrum (negative-ion mode) of He@4/4 (3/7).

4. Synthesis of C₆₀ derivative He@5 with an 8-membered-ring opening

To a stirred suspension of zinc powder (600 mg, 9.176 mmol) in dry THF (20 mL) was added titanium (IV) tetrachloride (500 μ L, 4.560 mmol) drop by drop at 0 °C under argon atmosphere, and the mixture was refluxed for 2 h. A 3.0 mL portion of the resulting black slurry was added to a stirred solution of He@4/4 (3/7) (143.0 mg, 0.138 mmol) in dry ODCB (25 mL) at room temperature under argon atmosphere. After heating at 85 °C for 1 h, the resulting brownish purple solution was cooled to room temperature. Then the solution was diluted with CS₂ (30 mL) and washed with aqueous solution of NaHCO₃ (saturated, 50 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure to give a residual brown solid, which was then subjected to flash column chromatography over silica gel. Elution with toluene-EtOAc (20:1) gave He@5/5 (3/7) (84.5 mg, 0.084 mmol, 61%) as a brown solid. The following NMR spectra were identical to the reported ones for empty compound.¹

He@**5**/**5** (3/7): ¹H NMR (300 MHz, CS₂-acetone- d_6 (7:1)) δ 8.67 (m, 1H), 7.90-8.00 (m, 2H), 7.69-7.76 (m, 2H), 7.37-7.44 (m, 2H), 7.10-7.22 (m, 7H); ¹³C NMR (75 MHz, CS₂-CDCl₃ (1:2)) δ 168.70, 165.32, 149.51, 148.62, 148.62, 148.30, 145.77, 145.60, 145.52, 145.45, 145.29, 144.74, 144.74, 144.59, 144.57, 144.33, 144.33, 144.19, 144.19, 144.04, 143.92, 143.87, 143.78, 143.73, 143.59, 143.58, 143.40, 143.21, 141.69, 140.91, 140.91, 140.69, 140.68, 140.60, 140.34, 139.53, 139.14, 138.47, 138.32, 137.08, 137.03, 137.03, 136.71, 135.51, 135.38, 135.22, 134.89, 131.21, 131.01, 128.66, 128.58, 128.31, 128.31, 127.56, 127.42, 127.42, 127.36, 125.55, 122.90, 73.19, 56.56.

Fig. S4. ¹H NMR (300 MHz, CS₂-acetone- d_6 (7:1)) spectrum of He@**5**/**5** (3/7).

5. Synthesis and enrichment of He@C₆₀

A powder of He@5/5 (3/7) (70.0 mg, 0.070 mmol) lightly wrapped with a piece of aluminum foil was placed in a glass tube (inner diameter 20 mm), which was heated with an electric furnace at 400 °C for 2 h under vacuum (1 mmHg). The resulting black solid was dissolved in CS₂ (50 mL) and subjected to flash column chromatography over silica gel. Elution with CS₂ gave He@C₆₀/C₆₀ (3/7) (38.3 mg, 0.053 mmol, 76%) as a brown solid.

He@C₆₀/C₆₀ (3/7): ¹³C NMR (75 MHz, ODCB- d_4) δ 142.80 (He@C₆₀), 142.78 (C₆₀); HRMS (+FAB), calcd for C₆₀He (M⁺) 724.0026, found 724.0026.

Fig. S6. (a) APCI-MS spectrum (negative-ion mode) of He@C₆₀/C₆₀ (3/7) and (b) theoretical isotopic pattern for C₆₀.

5-2. Enrichment of He@C₆₀

The sample of He@C₆₀/C₆₀ (3/7) was subjected to the recycle HPLC on Cosmosil Buckyprep column (two directly connected columns; 250 mm length, 20 mm inner diameter; mobile phase, toluene; 50 °C; flow rate was 9.9 mL/min).² After 10 recycling, the separated latter portion was evaporated and further subjected to the same HPLC. After 40 recycling, the latter potion was collected and was evaporated to give He@C₆₀/C₆₀ (6/4). By repeating this procedure He@C₆₀ at occupation level of 95% was obtained.

Fig. S7. APCI-MS spectrum (negative-ion mode) of a mixture of He@C₆₀ and C₆₀ after purification with the recycling HPLC. The occupation level of (a) 60% and (b) 95%.

A powder of cage-opened C₇₀ derivative **6** (441.0 mg, 0.391 mmol) wrapped in aluminum foil was heated at 115 °C in an autoclave under pressurized He gas (1120 atm) for 1 h. This high pressure (1120 atm) was generated by (i) introducing He gas (110 atm) into the autoclave, (ii) elevating the pressure up to 1030 atm by the use of a hydraulic compressor at room temperature, and (iii) heating the autoclave at 115 °C. After cooling to ambient temperature, the resulting powder was recovered from the autoclave and dissolved in benzene (1 L). The solution was irradiated with high-pressure mercury lamp for 1.5 h at room temperature through Pyrex glass. The solvent was removed *in vacuo* and the residual brown solid was subjected to flash column chromatography over silica gel. Elution with toluene-EtOAc (10:1) gave He@7/7 (3/7) (225.9 mg, 0.208 mmol, 53%) as a brown solid. The following NMR spectra were identical to the reported ones for empty compound.³

He@7/7 (3/7): ¹H NMR (300 MHz, CS₂-CD₂Cl₂ (1:1)) δ 8.80 (m, 1H), 8.51 (m, 1H), 7.94 (m, 1H), 7.76 (m, 2H), 7.70 (m, 1H), 7.40 (m, 1H), 7.22 (m, 1H), 6.72 (d, *J* = 9.9 Hz, 1H), 6.59 (d, *J* = 9.9 Hz, 1H); ¹³C NMR (75 MHz, ODCB-*d*₄) δ 198.37, 187.50, 165.81, 164.11, 151.17, 150.84, 150.71, 150.61, 150.45, 150.31, 149.91, 149.32, 149.19, 149.19, 148.87, 148.68, 148.37, 148.34, 148.13, 148.09, 148.05, 147.89, 147.89, 147.75, 147.69, 147.48, 146.93, 146.69, 146.58, 145.86, 145.60, 145.37, 145.29, 144.45, 144.21, 144.01, 143.70, 143.70, 143.32, 143.17, 142.92, 142.78, 142.17, 142.07, 141.60, 140.66, 139.79, 138.43, 138.15, 137.99, 137.91, 137.81, 137.09, 137.09, 136.73, 136.73, 135.12, 134.52, 133.63, 133.32, 132.85, 123.19, 122.79, 122.42, 122.03, 59.98, 52.92 (the signals at the range of δ 126.0 ~ 132.5 were overlapped with the signals of ODCB-*d*₄).

Fig. S10. APCI-MS spectrum (negative-ion mode) of He@7/7 (3/7).

7. Synthesis of C₇₀ derivative He@8 with an 8-membered-ring opening

To a stirred suspension of zinc powder (600 mg, 9.176 mmol) in dry THF (20 mL) was added titanium (IV) tetrachloride (500 μ L, 4.560 mmol) drop by drop at 0 °C under argon atmosphere, and the mixture was refluxed for 2 h. A 4.1 mL portion of the resulting black slurry was added to a stirred solution of He@7/7 (3/7) (200.0 mg, 0.185 mmol) in dry ODCB (25 mL) at room temperature under argon atmosphere. After heating at 85 °C for 1 h, the resulting brown solution was cooled to room temperature. Then the solution was diluted with CS₂ (30 mL) and washed with aqueous solution of NaHCO₃ (saturated, 50 mL). The organic layer was dried over MgSO₄ and evaporated under reduced pressure to give a residual brown solid, which was then subjected to flash column chromatography over silica gel. Elution with toluene-EtOAc (10:1) gave He@**8/8** (3/7) (157.6 mg, 0.150 mmol, 81%) as a brown solid. The following NMR spectra were identical to the reported ones for empty compound.³

He@**8**/8 (3/7): ¹H NMR (300 MHz, CS₂-CDCl₃ (1:1)) δ 9.00 (m, 1H), 8.59 (m, 1H), 8.40 (m, 1H), 8.09 (m, 1H), 7.88 (m, 1H), 7.73 (m, 1H), 7.49 (m, 1H), 6.50 (d, *J* = 9.6 Hz, 1H), 6.30 (d, *J* = 9.3 Hz, 1H); ¹³C NMR (75 MHz, CS₂-CDCl₃ (1:1)) δ 168.20, 165.41, 153.42, 150.79, 150.61, 150.40, 150.13, 150.00, 150.00, 149.82, 149.34, 149.34, 149.03, 148.46, 148.42, 148.27, 148.33, 148.02, 147.94, 147.89, 147.87, 147.82, 147.75, 147.44, 147.23, 147.20, 147.17, 147.11, 146.84, 146.18, 145.78, 145.72, 145.29, 145.22, 144.99, 144.86, 144.67, 144.27, 144.14, 143.91, 143.91, 143.82, 143.80, 143.12, 142.42, 142.03, 141.67, 141.43, 140.92, 140.43, 139.90, 139.55, 139.15, 138.16, 137.15, 137.08, 136.91, 136.30, 136.02, 135.36, 134.99, 133.29, 132.20, 132.02, 131.66, 131.03, 130.88, 130.49, 128.86, 127.58, 126.46, 124.93, 124.62, 124.41, 124.06, 123.37, 122.27, 122.05, 121.90, 117.49, 54.29, 52.87.

Fig. S11. ¹H NMR (300 MHz, CS₂-CDCl₃ (1:1)) spectrum of He@**8/8** (3/7).

8. Synthesis and enrichment of He@C₇₀

A powder of He@**8**/**8** (3/7) (137.1 mg, 0.130 mmol) lightly wrapped with a piece of aluminum foil was placed in a glass tube (inner diameter 20 mm), which was heated with an electric furnace at 400 °C for 45 min under vacuum (1 mmHg). The resulting black solid was dissolved in CS₂ (50 mL) and subjected to flash column chromatography over silica gel. Elution with CS₂ gave He@C₇₀/C₇₀ (3/7) (29.9 mg, 0.041 mmol, 27%) as a brown solid.

He@C₇₀/C₇₀ (3/7): ¹³C NMR (100 MHz, CS₂-CD₂Cl₂ (1:1)) δ 150.91 (He@C₇₀ & C₇₀), 148.36 (He@C₇₀ & C₇₀), 147.67(He@C₇₀ & C₇₀), 145.66 (He@C₇₀), 145.64 (C₇₀), 131.18 (He@C₇₀), 131.15 (C₇₀); HRMS (+FAB), calcd for C₇₀He (M⁺) 844.0026, found 844.0031.

Fig. S13. (a) APCI-MS spectrum (negative-ion mode) of He@C₇₀/C₇₀ (3/7) and (b) theoretical isotopic pattern for C_{70} .

8-2. Enrichment of He@C₇₀

The sample of He@C₇₀/C₇₀ (3/7) was subjected to the recycle HPLC on Cosmosil Buckyprep column (two directly connected columns; 250 mm length, 20 mm inner diameter; mobile phase, toluene; 50 °C; flow rate was 6.0 mL/min).⁴ After 25 recycling, the latter portion was separated and was evaporated to give He@C₇₀/C₇₀ (6/4).

Fig. S14. APCI-MS spectrum (negative-ion mode) of He@C₇₀ (He@C₇₀/C₇₀ = 6/4) obtained after purification with the recycling HPLC.

9. Optimized Geometries

9-1. Cage-opened C₆₀ derivatives

Total energies without and with BSSE correction (E and E_{CP} in hartrees, respectively), and Cartesian coordinates for compounds 3, He@3, 1, and H₂@1 calculated at the MPWB1K/6-31G** level.

С

-2.118863 -3.100466

-1.834169

3

E = -3788.7685794

				С	-5.374803	-0.965368	0.246103
Cha	rge = 0, Multip	plicity = 1		С	-4.163034	-2.943622	0.096320
С	-3.179447	-1.500712	-3.123782	С	-1.903358	-3.577027	-0.570786
С	-1.763397	-1.395183	-3.338682	С	0.236951	2.877003	-0.680256
С	-1.201177	-0.168465	-3.570352	С	-5.071781	1.406345	-0.238120
С	-2.009880	1.018147	-3.557526	С	1.738830	-0.229072	-1.304023
С	-3.358503	0.928287	-3.285260	С	-4.774452	-2.020583	1.013804
С	-3.958916	-0.359938	-3.075161	С	-2.950135	-3.523774	0.415165
С	-1.091454	-2.339535	-2.487794	С	-0.650864	-3.317986	0.068057
С	0.068039	0.132414	-2.995130	С	-0.910091	-3.204078	1.463893
С	-1.216304	2.054197	-2.968157	С	1.354946	-1.915148	0.322346
С	-3.958484	1.855817	-2.363123	С	1.850486	1.110318	-1.117762
С	-4.954678	-0.225751	-2.045099	С	2.156037	2.585228	0.883909
С	-3.401946	-2.565359	-2.191198	С	-2.331813	-3.263627	1.679526
С	-3.174973	2.816207	-1.757062	С	-2.930299	-2.386759	2.565630
С	-1.786332	2.935202	-2.079880	С	-2.117040	-1.435313	3.266733
С	-3.297661	3.052754	-0.346656	С	-4.149761	-1.730708	2.209155
С	-1.066020	3.277598	-0.888383	С	-4.206538	2.357282	0.400486
С	0.114104	-2.031180	-1.854933	С	-5.299018	0.340611	0.690234
С	0.084605	1.529932	-2.684480	С	-4.579255	0.648525	1.894599
С	-1.999860	3.294475	0.195172	С	1.048947	-1.744026	1.660270
С	0.842822	1.980436	-1.631273	С	0.701430	2.840392	0.669305
С	0.732913	-0.762496	-2.171005	С	-0.211457	2.819559	1.692493
С	-4.931039	1.138674	-1.587210	С	-0.134009	-2.338931	2.180752
С	-5.171048	-1.252742	-1.149025	С	-0.759649	-1.459266	3.116193
С	0.364332	-2.568995	-0.521776	С	-4.043584	-0.361870	2.645333
С	-4.395282	-2.460648	-1.236518	С	-2.769921	-0.161951	3.255621

Supplementary Material (ESI) for Chemical Communication	s
This journal is (c) The Royal Society of Chemistry 2010	

С	0.007802	-0.287792	3.227707	С	3.845587	4.555893	-2.201337
С	-3.840033	1.867844	1.704433	С	5.196550	4.396373	-2.449614
С	-1.623616	2.863393	1.460909	С	5.831941	3.294596	-1.911773
С	-0.614326	0.925791	3.297334	С	5.101513	2.396718	-1.155894
С	-2.566622	2.063990	2.242272	0	2.770815	3.034960	1.803773
С	-2.036559	1.015070	3.107314	0	2.375431	-0.016015	2.864241
С	2.481614	-1.213202	-0.432858	S	0.295038	2.473349	3.377226
С	2.857710	1.692723	-0.188580	С	1.360228	-0.595701	2.634092
Ν	3.676077	0.750958	0.493569	0	-0.517322	3.356273	4.251323
С	3.503009	-0.501034	0.456573	Н	5.529324	0.409464	1.865996
С	3.751853	2.643823	-0.982801	Н	7.098712	-0.830938	3.305166
С	4.419147	-1.313264	1.298869	Н	6.836273	-3.270185	3.596389
С	3.282154	-2.116749	-1.383682	Н	5.005367	-4.443894	2.432509
С	5.444732	-0.658598	1.976182	Н	3.481939	-3.217743	0.987251
С	6.310049	-1.356616	2.789608	Н	4.346151	-0.407949	-2.106060
С	6.161106	-2.723716	2.956175	Н	5.707972	-1.678267	-3.699257
С	5.137063	-3.380986	2.303574	Н	5.414680	-4.123078	-3.906457
С	4.273934	-2.681843	1.479476	Н	3.752334	-5.270479	-2.491456
С	4.219589	-1.479137	-2.186394	Н	2.407588	-4.011130	-0.892480
С	4.984755	-2.192917	-3.086163	Н	3.310409	5.409399	-2.592608
С	4.820208	-3.561560	-3.203069	Н	5.730815	5.120550	-3.042571
С	3.888591	-4.203287	-2.411084	Н	6.887042	3.136246	-2.073361
С	3.123643	-3.487057	-1.505964	Н	5.555286	1.535525	-0.695380
N	3.135989	3.700136	-1.486274				
He	2)3						
E =	-3791.667803	6		С	-4.944053	-0.232987	-2.037726
$E_{\rm CP}$	=-3791.66676	51176306		С	-3.397498	-2.578676	-2.177999
				С	-3.165810	2.807933	-1.767824
Cha	rge = 0, Multip	licity = 1		С	-1.777460	2.923984	-2.092132
С	-3.174471	-1.517862	-3.115373	С	-3.288259	3.052887	-0.359012
С	-1.758154	-1.413050	-3.329957	С	-1.056308	3.272302	-0.903389
С	-1.195423	-0.187352	-3.567229	С	0.119265	-2.040968	-1.843909
С	-2.002978	0.999894	-3.559898	С	0.092215	1.515452	-2.691218
С	-3.351007	0.912434	-3.286189	С	-1.989698	3.295310	0.180134
С	-3.950621	-0.374411	-3.068178	С	0.851397	1.971291	-1.641021
С	-1.085833	-2.354271	-2.475988	С	0.738838	-0.774315	-2.166306
С	0.074281	0.116373	-2.994771	С	-4.921209	1.133557	-1.587550
С	-1.208603	2.038339	-2.976160	С	-5.160775	-1.254709	-1.137079
С	-3.949874	1.845412	-2.368745	С	0.370776	-2.570315	-0.507872

С	-4.388149	-2.464657	-1.220820	С	3.761540	2.637378	-0.996783
С	-2.113730	-3.112178	-1.818709	С	4.424947	-1.309315	1.306159
С	-5.364426	-0.958597	0.256021	С	3.289204	-2.124140	-1.374976
С	-4.154517	-2.937574	0.114971	С	5.446776	-0.651693	1.986356
С	-1.897283	-3.576763	-0.550676	С	6.309526	-1.346697	2.805048
С	0.246500	2.872477	-0.694088	С	6.161706	-2.713627	2.974103
С	-5.063526	1.410224	-0.240373	С	5.141238	-3.373743	2.318811
С	1.746104	-0.236676	-1.303166	С	4.280630	-2.677616	1.489560
С	-4.765406	-2.010020	1.028509	С	4.228159	-1.490172	-2.178764
С	-2.942383	-3.516296	0.436036	С	4.992734	-2.207547	-3.076155
С	-0.644438	-3.314863	0.086499	С	4.825958	-3.576210	-3.189594
С	-0.902453	-3.192241	1.481705	С	3.892713	-4.214296	-2.396603
С	1.362686	-1.912495	0.331929	С	3.128323	-3.494468	-1.493822
С	1.859066	1.103526	-1.123881	Ν	3.144519	3.688047	-1.510583
С	2.166383	2.588964	0.870255	С	3.854340	4.540857	-2.228896
С	-2.323506	-3.249487	1.698568	С	5.206876	4.383965	-2.470194
С	-2.920928	-2.367964	2.580365	С	5.843481	3.288338	-1.921398
С	-2.107026	-1.413613	3.275795	С	5.112769	2.393603	-1.162044
С	-4.140499	-1.713539	2.221758	Ο	2.782109	3.043475	1.787132
С	-4.199091	2.365303	0.393222	Ο	2.385878	0.000427	2.864453
С	-5.290775	0.349771	0.693969	S	0.306153	2.493895	3.365523
С	-4.572156	0.664822	1.897398	С	1.370176	-0.579321	2.636932
С	1.057532	-1.732575	1.668893	Ο	-0.505812	3.382400	4.234332
С	0.711739	2.843544	0.655260	Н	5.530115	0.416271	1.874249
С	-0.200715	2.829414	1.678949	Н	7.095191	-0.818784	3.322888
С	-0.125403	-2.323717	2.193204	Н	6.834881	-3.257710	3.618435
С	-0.749911	-1.439004	3.124222	Н	5.010342	-4.436510	2.449689
С	-4.034314	-0.342634	2.650956	Н	3.491375	-3.215808	0.995473
С	-2.759832	-0.140403	3.258615	Н	4.356424	-0.418993	-2.101100
С	0.018062	-0.267433	3.229462	Н	5.717224	-1.695686	-3.690080
С	-3.832614	1.883277	1.700371	Н	5.419966	-4.140569	-3.891097
С	-1.613145	2.872346	1.448034	Н	3.754734	-5.281462	-2.474333
С	-0.603865	0.946492	3.293897	Н	2.410945	-4.015657	-0.879409
С	-2.557309	2.079682	2.234441	Н	3.318055	5.389730	-2.628637
С	-2.026356	1.035364	3.104236	Н	5.741376	5.105530	-3.066111
С	2.489454	-1.216243	-0.427723	Н	6.899823	3.132364	-2.077083
С	2.867140	1.690255	-0.198099	Н	5.567511	1.537550	-0.693083
Ν	3.685029	0.751628	0.488976	He	-2.220955	-0.348278	-0.393701
С	3.511133	-0.500400	0.458167				

С

-0.949478 -3.444980

0.667618

1	
E = -3713	3.6330266

				С	1.318923	-1.907191	-0.103190
Cha	rge = 0, Multip	plicity = 1		С	1.831364	1.397835	-0.724339
С	-3.228909	-0.581252	-3.302052	С	2.175535	2.342000	1.568711
С	-1.812840	-0.432531	-3.489755	С	-2.370314	-3.551263	0.867981
С	-1.241937	0.808533	-3.401293	С	-2.954529	-2.930995	1.957585
С	-2.040725	1.958209	-3.079916	С	-2.126271	-2.210154	2.879682
С	-3.389405	1.807963	-2.829322	С	-4.168041	-2.190947	1.791312
С	-3.999050	0.512893	-2.953176	С	-4.190823	2.227384	1.109636
С	-1.142931	-1.568225	-2.916953	С	-5.303565	0.214346	0.874226
С	0.031555	0.945089	-2.775385	С	-4.567124	0.192526	2.107465
С	-1.235710	2.805763	-2.253740	С	1.022649	-2.108303	1.231552
С	-3.974355	2.465674	-1.691652	С	0.726228	2.644439	1.444887
С	-4.986415	0.379785	-1.914495	С	-0.169990	2.323912	2.440642
С	-3.453097	-1.850711	-2.677960	С	-0.160323	-2.813736	1.585669
С	-3.178631	3.231232	-0.864636	С	-0.767620	-2.211411	2.731345
С	-1.793326	3.428967	-1.161977	С	-4.038432	-0.983321	2.564113
С	-3.282411	3.087287	0.559169	С	-2.757761	-0.964781	3.190061
С	-1.059847	3.458402	0.068529	С	0.017939	-1.122888	3.149329
С	0.066421	-1.440370	-2.231084	С	-3.814870	1.411109	2.231754
С	0.062791	2.217250	-2.118933	С	-1.586488	2.415631	2.226684
С	-1.976499	3.173184	1.127422	С	-0.584636	0.053558	3.517596
С	0.833690	2.383286	-0.993788	С	-2.528912	1.443726	2.778876
С	0.689670	-0.136436	-2.209968	С	-2.006264	0.202059	3.337818
С	-4.946934	1.577661	-1.117695	С	2.443087	-1.032255	-0.656380
С	-5.204988	-0.844916	-1.316788	С	2.855652	1.718552	0.308741
С	0.320647	-2.309773	-1.085155	Ν	3.657907	0.623798	0.732821
С	-4.440014	-1.994162	-1.722054	С	3.476698	-0.575692	0.377348
С	-2.171847	-2.468831	-2.480577	С	3.766073	2.814109	-0.242247
С	-5.396729	-0.930609	0.105778	С	4.415338	-1.573626	0.958320
С	-4.204006	-2.810832	-0.564439	С	3.231675	-1.673086	-1.808429
С	-1.952469	-3.259725	-1.387630	С	5.485980	-1.102530	1.712946
С	0.245369	3.023840	0.157475	С	6.377766	-1.975909	2.296078
С	-5.074138	1.483620	0.255408	С	6.212453	-3.343099	2.149643
С	1.703062	0.148878	-1.241103	С	5.145652	-3.823099	1.416575
С	-4.802011	-2.154831	0.566592	С	4.255857	-2.946034	0.822669
С	-2.994255	-3.462714	-0.415696	С	4.159009	-0.858902	-2.446644
С	-0.695607	-3.184803	-0.709515	С	4.918229	-1.335742	-3.496016

С	4.759260	-2.639744	-3.929963	Н	6.907756	-4.028062	2.609915
С	3.837870	-3.455504	-3.303219	Н	4.999699	-4.885957	1.302669
С	3.078331	-2.977022	-2.249311	Н	3.430562	-3.351725	0.265854
N	3.169547	3.973968	-0.461720	Н	4.281891	0.164062	-2.116727
С	3.892027	4.966639	-0.950601	Н	5.633303	-0.686471	-3.976603
С	5.237910	4.849041	-1.245481	Н	5.349712	-3.016631	-4.750221
С	5.852924	3.635585	-1.007653	Н	3.705402	-4.474899	-3.630846
С	5.108296	2.591915	-0.490096	Н	2.370099	-3.635812	-1.772240
0	2.805655	2.560457	2.559889	Н	3.372558	5.900557	-1.111857
0	2.400719	-0.828132	2.848677	Н	5.784114	5.687782	-1.645082
S	0.395321	1.469561	3.878536	Н	6.902998	3.501613	-1.217254
С	1.362213	-1.281458	2.483464	Н	5.545307	1.632920	-0.268228
Н	5.585518	-0.038846	1.848893				
Н	7.201087	-1.589403	2.876554				

$H_2(e$	@1						
E =	-3714.807525	2		С	0.699895	-0.175771	-2.207933
$E_{\rm CP}$	$E_{\rm CP} = -3714.806570573809$				-4.937631	1.555533	-1.143815
				С	-5.194384	-0.869941	-1.299328
Cha	arge = 0, Multip	plicity $= 1$		С	0.331882	-2.326226	-1.044376
С	-3.219799	-0.641507	-3.288934	С	-4.429579	-2.026387	-1.684622
С	-1.804205	-0.496055	-3.479532	С	-2.161184	-2.513836	-2.435903
С	-1.233978	0.746161	-3.412006	С	-5.385936	-0.929278	0.124479
С	-2.032725	1.900594	-3.111016	С	-4.192690	-2.821935	-0.512900
С	-3.381687	1.755620	-2.860069	С	-1.940433	-3.284429	-1.328939
С	-3.990858	0.458348	-2.960516	С	0.254599	3.024919	0.105663
С	-1.132790	-1.621305	-2.888921	С	-5.063714	1.486578	0.230863
С	0.039484	0.894619	-2.789604	С	1.714902	0.127898	-1.246566
С	-1.227763	2.762421	-2.300132	С	-4.790534	-2.144839	0.606115
С	-3.965684	2.433044	-1.733775	С	-2.981851	-3.469928	-0.352998
С	-4.977348	0.343628	-1.919016	С	-0.683211	-3.195315	-0.653004
С	-3.443068	-1.900122	-2.643500	С	-0.936122	-3.428061	0.728864
С	-3.169945	3.213244	-0.920451	С	1.330086	-1.903351	-0.070783
С	-1.784763	3.405942	-1.220550	С	1.842339	1.385180	-0.749921
С	-3.273239	3.095423	0.505683	С	2.183460	2.364263	1.529577
С	-1.050787	3.457927	0.008857	С	-2.356340	-3.531554	0.931290
С	0.076944	-1.479932	-2.206314	С	-2.940361	-2.891532	2.009060
С	0.070441	2.177067	-2.155130	С	-2.112959	-2.153863	2.917814
С	-1.967459	3.192285	1.072455	С	-4.154381	-2.156128	1.829863
С	0.842448	2.363872	-1.034150	С	-4.181913	2.246493	1.072271

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

С	-5.292438	0.229228	0.872684	С	4.735199	-2.729558	-3.902288
С	-4.557688	0.231405	2.106813	С	3.823280	-3.529798	-3.242554
С	1.034753	-2.078749	1.267436	С	3.077582	-3.024905	-2.191332
С	0.735294	2.669131	1.399907	Ν	3.179461	3.984067	-0.475675
С	-0.161205	2.369553	2.401937	С	3.898405	4.976680	-0.969850
С	-0.147474	-2.778391	1.634357	С	5.236219	4.852087	-1.296612
С	-0.754659	-2.155950	2.768805	С	5.846455	3.630798	-1.088091
С	-4.026550	-0.935636	2.581880	С	5.105301	2.586754	-0.566512
С	-2.746037	-0.904769	3.206849	0	2.812517	2.592591	2.519176
С	0.030100	-1.060215	3.167744	Ο	2.414167	-0.775234	2.864963
С	-3.807414	1.453112	2.211291	S	0.403413	1.543295	3.856374
С	-1.577776	2.456398	2.186213	С	1.374932	-1.231404	2.505730
С	-0.574295	0.120715	3.517531	Н	5.606501	-0.008596	1.836181
С	-2.520899	1.496161	2.756964	Н	7.222123	-1.544985	2.885479
С	-1.996001	0.264753	3.335371	Н	6.922630	-3.987184	2.661973
С	2.455434	-1.042487	-0.642737	Η	5.007329	-4.863403	1.377461
С	2.865339	1.723862	0.278466	Н	3.437846	-3.343247	0.319858
Ν	3.671524	0.637432	0.717231	Н	4.276973	0.120044	-2.157129
С	3.491801	-0.567728	0.380044	Н	5.605492	-0.777126	-4.010944
С	3.771496	2.817102	-0.283514	Н	5.314626	-3.126427	-4.720979
С	4.430111	-1.556281	0.976600	Н	3.687113	-4.557144	-3.542605
С	3.235018	-1.710099	-1.785539	Н	2.375297	-3.671434	-1.689350
С	5.504070	-1.074333	1.719560	Н	3.382856	5.916418	-1.108186
С	6.395891	-1.939581	2.314688	Н	5.780300	5.691689	-1.697265
С	6.227060	-3.308751	2.192534	Н	6.890536	3.491289	-1.322531
С	5.156340	-3.799081	1.472084	Н	5.540168	1.622373	-0.364660
С	4.266574	-2.930341	0.866198	Н	-2.269248	-0.504955	-0.013317
С	4.152434	-0.911668	-2.457143	Н	-2.238098	0.222828	-0.178376
С	4.898279	-1.414808	-3.503928				

9-2. Cage-opened C₇₀ derivatives

Total energies without and with BSSE correction (*E* and E_{CP} in hartrees, respectively), and Cartesian coordinates for compounds **6**, He@**6**, He2@**6**, **2**, H2@**2**, and (H2)2@**2** calculated at the MPWB1K/6-31G** level.

Supplementary Ma	aterial (ESI) for	Chemical Communicatio	ns
This journal is (c) The Royal Sc	ciety of Chemistry 2010	

С	-2.142076	2.149701	2.989675	С	7.398332	-0.366843	1.882820
С	-3.243997	2.682631	2.246691	С	7.385985	-1.558790	2.581700
С	-2.996435	3.338606	1.072170	С	6.334904	-2.430902	2.368630
С	-1.646453	3.447825	0.573863	Ν	5.348311	-2.185315	1.520868
С	-1.701342	3.372753	-0.828727	Ν	4.303138	3.415130	0.363628
С	-3.076848	3.190210	-1.221360	С	4.827959	4.612023	0.568547
С	-3.391854	2.380492	-2.282692	С	4.600000	5.698073	-0.256830
С	-4.487311	1.457996	-2.187443	С	3.783575	5.518350	-1.355832
С	-5.246629	1.402656	-1.038626	С	3.226649	4.274108	-1.576999
С	-4.953563	2.290422	0.053872	Ο	4.273595	-2.806334	-1.372628
С	-3.881976	3.162465	-0.039849	Ο	2.922680	-0.593398	-3.583985
С	-5.186309	1.577530	1.277521	S	1.596918	-3.554341	-2.429853
С	-4.356701	1.786948	2.361078	Ο	0.987746	-4.880301	-2.697276
С	-5.594067	0.240383	0.943285	Н	4.369412	1.570892	-2.592488
С	-5.146170	-0.819530	1.707285	Н	5.344052	-0.515569	-1.921651
С	-5.617466	0.126735	-0.486944	Н	6.328132	0.825104	0.443422
С	-5.168217	-1.036392	-1.089880	Н	8.193461	0.347846	2.028751
С	4.063165	1.109219	-1.665610	Н	8.166758	-1.808532	3.281410
С	4.197761	-0.796051	-0.084196	Н	6.281096	-3.369327	2.901774
С	3.001919	1.832278	-0.901307	Н	5.464582	4.708788	1.436891
С	4.607957	-0.034053	-1.297087	Н	5.052974	6.652037	-0.041766
С	3.510268	3.253302	-0.683953	Н	3.580290	6.334727	-2.031417
С	5.379624	-1.049477	0.843422	Н	2.582329	4.095572	-2.423277
С	6.374907	-0.099800	0.995728				
He	<i>2</i> 6						
E =	-3941.696029	9		С	-0.027947	-3.337647	1.222196
$E_{\rm CP}$	= -3941.69519	94858822		С	0.983464	-2.689724	1.987035
				С	0.320265	-2.023033	3.058146
Cha	rge = 0, Multip	plicity $= 1$		С	0.703097	-0.752133	3.383323
С	3.165649	-0.072363	0.710334	С	1.762084	-0.140808	2.651474
С	2.513240	-0.830284	1.726606	С	1.355097	1.196525	2.381848
С	2.100804	-2.160415	1.369144	С	1.650798	1.771571	1.165469
С	2.386072	-2.626556	0.053942	С	2.702488	1.172620	0.404397
С	3.673478	-2.182674	-0.546105	С	1.665852	1.828793	-1.605016
С	1.843449	-0.296214	-3.208935	С	1.305491	1.032396	-2.654883
С	0.586556	-1.138171	-3.239056	С	-0.051691	1.060087	-3.090457
С	0.318261	-2.361582	-2.722297	С	-0.473174	-0.228606	-3.429091
С	1.391790	-3.237154	-0.671957	С	-1.806467	-0.613184	-3.384833
С	0.073396	-3.438057	-0.150373	С	-2.092260	-1.874056	-2.744931

С	-1.012430	-2.637906	-2.217884	С	-3.867732	3.174743	-0.054344
С	-1.143034	-3.272024	-0.948224	С	-5.167038	1.588126	1.266809
С	-2.410423	-3.216988	-0.276924	С	-4.341914	1.804940	2.350730
С	-2.476384	-3.155726	1.177096	С	-5.576079	0.249999	0.938330
С	-1.279126	-3.158688	1.888346	С	-5.136449	-0.808970	1.706390
С	-1.073460	-2.347611	3.022809	С	-5.600154	0.129426	-0.489624
С	-2.059475	-1.449728	3.457869	С	-5.162732	-1.040054	-1.088438
С	-1.650889	-0.096055	3.798306	С	4.074009	1.100342	-1.669818
С	-0.292652	0.232322	3.679401	С	4.200841	-0.802337	-0.084529
С	0.113810	1.426589	3.046958	С	3.014451	1.828593	-0.907881
С	-0.802636	2.352032	2.551893	С	4.614063	-0.044597	-1.299069
С	-0.526321	2.966795	1.262412	С	3.524991	3.249097	-0.694235
С	0.648518	2.603950	0.522533	С	5.381318	-1.054875	0.845348
С	0.604401	2.559190	-0.903847	С	6.376149	-0.104825	0.998615
С	-0.628036	2.822363	-1.563703	С	7.397632	-0.370560	1.888316
С	-0.972117	2.031349	-2.716743	С	7.383939	-1.561600	2.588763
С	-2.315505	1.750749	-3.015684	С	6.333478	-2.434148	2.374520
С	-2.731710	0.435739	-3.346765	Ν	5.348694	-2.189786	1.524249
С	-4.045940	0.236688	-2.823789	Ν	4.312170	3.414569	0.357026
С	-4.358773	-0.980215	-2.268793	С	4.838161	4.611520	0.558945
С	-3.361746	-2.018917	-2.186097	С	4.616918	5.693849	-0.273094
С	-3.521734	-2.702904	-0.966746	С	3.806300	5.510252	-1.375812
С	-4.656818	-2.117916	-0.289187	С	3.248313	4.265990	-1.593931
С	-4.667313	-2.008015	1.074374	0	4.273608	-2.817096	-1.366241
С	-3.553914	-2.514956	1.818834	0	2.929540	-0.611296	-3.581954
С	-3.339702	-1.652237	2.924088	S	1.595455	-3.575371	-2.415621
С	-4.291435	-0.576979	2.838831	0	0.979426	-4.899585	-2.675428
С	-3.903431	0.703364	3.155116	Н	4.382799	1.559203	-2.597282
С	-2.551764	0.955048	3.575774	Н	5.348707	-0.529979	-1.922380
С	-2.130990	2.172655	2.982635	Н	6.330425	0.819477	0.445189
С	-3.231710	2.705234	2.236524	Н	8.192299	0.344471	2.035143
С	-2.983559	3.358473	1.058959	Н	8.163165	-1.810251	3.290597
С	-1.632644	3.465382	0.559629	Н	6.278563	-3.371876	2.908794
С	-1.687059	3.384448	-0.844390	Н	5.470086	4.711379	1.430374
С	-3.062791	3.197787	-1.237083	Н	5.070461	6.648040	-0.060192
С	-3.376443	2.378056	-2.292650	Н	3.608338	6.323729	-2.056469
С	-4.469030	1.452563	-2.192258	Н	2.608169	4.084299	-2.442749
С	-5.225975	1.402332	-1.044019	Не	-2.072414	0.155278	0.143761
С	-4.935035	2.297385	0.042343				

He ₂	@6						
E =	-3944.593969	9		С	-0.529830	2.954323	1.267453
$E_{\rm CP}$	= -3944.59147	74854503		С	0.647446	2.601069	0.528572
				С	0.604723	2.560526	-0.898141
Cha	rge = 0, Multip	olicity = 1		С	-0.629219	2.818518	-1.556281
С	3.165505	-0.069506	0.709634	С	-0.971416	2.034432	-2.713062
С	2.513586	-0.830330	1.724020	С	-2.315284	1.752838	-3.010811
С	2.104341	-2.160796	1.365086	С	-2.728651	0.440622	-3.345993
С	2.390622	-2.623737	0.049038	С	-4.043755	0.242249	-2.822260
С	3.677856	-2.176590	-0.549492	С	-4.350636	-0.972901	-2.265847
С	1.849687	-0.285631	-3.207656	С	-3.349272	-2.007017	-2.183944
С	0.594082	-1.129408	-3.238964	С	-3.507916	-2.690365	-0.967316
С	0.327840	-2.354313	-2.724306	С	-4.644093	-2.108172	-0.292122
С	1.399123	-3.238849	-0.676676	С	-4.657430	-2.003585	1.069742
С	0.081470	-3.443938	-0.155128	С	-3.544557	-2.512362	1.812220
С	-0.021775	-3.341279	1.217467	С	-3.336491	-1.658746	2.922731
С	0.987770	-2.691940	1.982623	С	-4.293320	-0.586234	2.838965
С	0.324013	-2.029591	3.056689	С	-3.907714	0.692221	3.157817
С	0.704839	-0.758893	3.384034	С	-2.554354	0.941496	3.578667
С	1.761814	-0.144812	2.651006	С	-2.134308	2.155181	2.982042
С	1.354198	1.192473	2.385300	С	-3.235686	2.685628	2.236682
С	1.652259	1.772849	1.171641	С	-2.988715	3.339351	1.061718
С	2.703733	1.177017	0.408111	С	-1.638042	3.447130	0.565752
С	1.668766	1.836993	-1.601799	С	-1.691393	3.370396	-0.835611
С	1.310295	1.042731	-2.654503	С	-3.067019	3.187827	-1.228455
С	-0.047768	1.067361	-3.088544	С	-3.379905	2.374788	-2.286859
С	-0.467211	-0.221310	-3.429000	С	-4.477261	1.455069	-2.191841
С	-1.800165	-0.606385	-3.387729	С	-5.243744	1.405157	-1.046608
С	-2.081827	-1.866154	-2.746172	С	-4.951442	2.296485	0.044408
С	-1.002434	-2.631649	-2.220681	С	-3.875830	3.164980	-0.049351
С	-1.133424	-3.269935	-0.952951	С	-5.180825	1.583383	1.269320
С	-2.398834	-3.209994	-0.280752	С	-4.348663	1.791597	2.351507
С	-2.467202	-3.153958	1.171889	С	-5.588379	0.245456	0.938139
С	-1.272528	-3.164012	1.885052	С	-5.137173	-0.812275	1.704289
С	-1.069235	-2.356229	3.022830	С	-5.613649	0.129283	-0.492027
С	-2.056814	-1.460691	3.461049	С	-5.158580	-1.035026	-1.089486
С	-1.650271	-0.107268	3.803855	С	4.077638	1.111427	-1.664648
С	-0.292299	0.223084	3.683845	С	4.202588	-0.796418	-0.085383
С	0.113056	1.418469	3.052040	С	3.016312	1.836893	-0.902395
С	-0.805764	2.338775	2.554906				

С	4.616916	-0.034937	-1.297201	S	1.604322	-3.569774	-2.421471
С	3.524048	3.257829	-0.685283	Ο	0.987465	-4.892235	-2.688154
С	5.382403	-1.048403	0.845702	Н	4.387977	1.573505	-2.589988
С	6.374916	-0.096394	1.002054	Н	5.352648	-0.517974	-1.921023
С	7.396060	-0.361723	1.892206	Н	6.327770	0.828959	0.450552
С	7.384368	-1.554334	2.590051	Н	8.188932	0.354799	2.041388
С	6.336133	-2.428755	2.372861	Н	8.163472	-1.802703	3.292102
N	5.351625	-2.184779	1.522115	Н	6.282724	-3.367706	2.905099
N	4.309678	3.422977	0.367189	Н	5.463647	4.720265	1.444190
С	4.833004	4.620610	0.571824	Н	5.061811	6.658739	-0.043257
С	4.610500	5.704025	-0.258482	Н	3.602695	6.335061	-2.041906
С	3.801578	5.520800	-1.362474	Н	2.607575	4.094360	-2.433311
С	3.246383	4.275795	-1.583451	He	-2.575897	0.339418	0.050822
0	4.279971	-2.809229	-1.369482	He	0.098352	-0.444541	-0.240272
0	2.936435	-0.600008	-3.579548				
2							
E =	-3863.659105	5		С	0.081461	1.595353	2.913019
				С	0.511845	0.404564	3.508816
Cha	rge = 0, Multip	plicity = 1		С	1.845270	0.018900	3.505134
С	-3.181875	-0.298517	-0.620296	С	2.114237	-1.337290	3.092635
С	-2.540830	-1.235641	-1.482757	С	1.025521	-2.182182	2.726897
С	-2.124547	-2.476752	-0.883350	С	1.141702	-3.046075	1.599156
С	-2.406160	-2.679464	0.497736	С	2.405504	-3.127739	0.920181
С	-3.689298	-2.138932	1.002319	С	2.464394	-3.359055	-0.514213
С	-1.806270	0.280949	3.316289	С	1.265519	-3.510960	-1.202969
С	-0.547679	-0.526628	3.514318	С	1.054129	-2.949349	-2.478569
С	-0.295513	-1.826253	3.209543	С	2.036269	-2.153340	-3.088535
С	-1.401354	-3.096313	1.345247	С	1.619803	-0.893762	-3.683413
С	-0.079203	-3.369810	0.858104	С	0.260343	-0.552813	-3.617848
С	0.017809	-3.555532	-0.508383	С	-0.144502	0.737405	-3.213470
С	-1.000619	-3.098761	-1.391036	С	0.771629	1.739741	-2.907650
С	-0.342227	-2.647600	-2.573212	С	0.503503	2.584820	-1.753744
С	-0.732305	-1.465248	-3.136083	С	-0.660312	2.364457	-0.945578
С	-1.787913	-0.729949	-2.519639	С	-0.602091	2.599444	0.461301
С	-1.378494	0.632992	-2.504515	С	0.633850	2.998073	1.043783
С	-1.662433	1.421926	-1.410569	С	0.994495	2.466661	2.332399
С	-2.704562	0.976554	-0.542511	С	2.344556	2.259922	2.663598
С	-1.651251	2.019551	1.304291	С	2.769292	1.038091	3.241657
С	-1.277881	1.468772	2.498101	С	4.075268	0.740067	2.744356

С	4.376652	-0.560869	2.428552	С	-4.215864	-0.861928	0.299673
С	3.373842	-1.589381	2.552323	С	-3.004926	1.865926	0.628797
С	3.522019	-2.492684	1.485485	С	-4.609158	0.103187	1.363248
С	4.654496	-2.054850	0.702660	С	-3.528651	3.216738	0.150109
С	4.654936	-2.215432	-0.654725	С	-5.407674	-1.273466	-0.554914
С	3.537420	-2.857928	-1.276233	С	-6.411745	-0.369677	-0.859023
С	3.320490	-2.238771	-2.530731	С	-7.447404	-0.795965	-1.666430
С	4.274343	-1.168498	-2.663965	С	-7.438364	-2.095028	-2.138536
С	3.877891	0.023816	-3.219235	С	-6.378017	-2.910071	-1.789339
С	2.519184	0.182999	-3.668062	Ν	-5.380006	-2.512197	-1.017438
С	2.097149	1.485636	-3.307858	Ν	-4.318935	3.170634	-0.910735
С	3.201818	2.154267	-2.689713	С	-4.851026	4.302392	-1.341683
С	2.959393	3.019289	-1.658464	С	-4.634033	5.527158	-0.737839
С	1.613376	3.212937	-1.174425	С	-3.820875	5.566000	0.377849
С	1.681821	3.408924	0.215265	С	-3.256151	4.391028	0.833555
С	3.063350	3.317124	0.619987	Ο	-4.286770	-2.609789	1.928518
С	3.394668	2.728946	1.813629	Ο	-2.894200	0.043299	3.737410
С	4.493876	1.808008	1.883506	S	-1.614537	-2.978372	3.091651
С	5.241093	1.535951	0.757891	Н	-4.348877	1.906762	2.358752
С	4.934594	2.198318	-0.480879	Н	-5.338426	-0.258490	2.071160
С	3.856342	3.065495	-0.543588	Н	-6.359417	0.638720	-0.480319
С	5.159551	1.264991	-1.547598	Н	-8.249631	-0.122225	-1.925150
С	4.319781	1.259741	-2.643620	Н	-8.229463	-2.469880	-2.767248
С	5.576763	0.017346	-0.968248	Н	-6.327134	-3.929188	-2.145419
С	5.127493	-1.169944	-1.512917	Н	-5.484320	4.227093	-2.214641
С	5.611408	0.178959	0.457147	Н	-5.091416	6.419708	-1.132445
С	5.170690	-0.847642	1.275842	Н	-3.625198	6.497883	0.885427
С	-4.056625	1.291066	1.521170	Н	-2.611198	4.380134	1.698044
$H_2(a)$)2						
E =	-3864.831469	8		С	-0.539017	-0.627254	3.497906
$E_{\rm CP}$	= -3864.83061	8707344		С	-0.279776	-1.917019	3.159252
				С	-1.381354	-3.147538	1.267182
Cha	rge = 0, Multip	plicity = 1		С	-0.057778	-3.398415	0.770231
С	-3.175076	-0.306471	-0.611313	С	0.038220	-3.546875	-0.600832
С	-2.533150	-1.215045	-1.502240	С	-0.984295	-3.071509	-1.468709
С	-2.112456	-2.472562	-0.942014	С	-0.331110	-2.582615	-2.638070
С	-2.391815	-2.716972	0.433148	С	-0.729901	-1.387355	-3.166975
С	-3.675839	-2.194915	0.956035	С	-1.787639	-0.676057	-2.527813
С	-1.802111	0.180442	3.329988	С	-1.386955	0.688633	-2.478643

С	-1.673665	1.446880	-1.364196	С	1.589261	3.255698	-1.091942
С	-2.708906	0.970231	-0.503281	С	1.660114	3.411570	0.303161
С	-1.663061	1.976446	1.362573	С	3.042210	3.313858	0.703262
С	-1.283235	1.392329	2.538773	С	3.379353	2.694536	1.879330
С	0.076355	1.513408	2.952382	С	4.484151	1.778955	1.923576
С	0.514876	0.309749	3.515153	С	5.231220	1.542614	0.790569
С	1.850211	-0.068016	3.500824	С	4.916833	2.235939	-0.429225
С	2.126539	-1.411079	3.052056	С	3.833738	3.098568	-0.467645
С	1.042705	-2.252727	2.665783	С	5.147019	1.333503	-1.520647
С	1.163213	-3.089045	1.517877	С	4.304938	1.352986	-2.614688
С	2.427054	-3.147308	0.835735	С	5.573746	0.073654	-0.975469
С	2.483706	-3.336556	-0.605499	С	5.129752	-1.101061	-1.550536
С	1.284484	-3.476179	-1.296043	С	5.610217	0.196580	0.453758
С	1.066912	-2.879600	-2.555022	С	5.176265	-0.854094	1.245729
С	2.041778	-2.060376	-3.145265	С	-4.056654	1.217558	1.573121
С	1.616371	-0.787259	-3.704577	С	-4.205464	-0.901228	0.292117
С	0.255632	-0.455941	-3.626300	С	-3.016935	1.827260	0.689956
С	-0.156218	0.821352	-3.188958	С	-4.599787	0.029963	1.385702
С	0.753073	1.823625	-2.861691	С	-3.574050	3.173843	0.238033
С	0.480672	2.639395	-1.686727	С	-5.402951	-1.260658	-0.579123
С	-0.678988	2.388233	-0.880648	С	-6.261188	-0.263318	-1.015692
С	-0.618646	2.583578	0.532326	С	-7.316411	-0.626805	-1.827079
С	0.616958	2.971661	1.122271	С	-7.468442	-1.957124	-2.174400
С	0.983027	2.404975	2.393805	С	-6.539081	-2.865442	-1.705962
С	2.334110	2.196697	2.717491	Ν	-5.521996	-2.529625	-0.927013
С	2.767259	0.963552	3.263659	Ν	-4.472096	3.099639	-0.733546
С	4.074415	0.686609	2.757738	С	-5.041425	4.219610	-1.144916
С	4.382650	-0.603717	2.407051	С	-4.758086	5.462458	-0.608314
С	3.386806	-1.642177	2.504602	С	-3.835410	5.531258	0.416173
С	3.539874	-2.518107	1.415123	С	-3.230382	4.367320	0.850712
С	4.666076	-2.048713	0.641382	Ο	-4.263340	-2.689514	1.875893
С	4.664354	-2.171682	-0.719864	Ο	-2.884227	-0.071100	3.757066
С	3.550070	-2.804745	-1.356091	S	-1.591760	-3.073759	3.016321
С	3.327219	-2.152696	-2.592912	Η	-4.350119	1.808257	2.428012
С	4.273939	-1.073354	-2.699178	Η	-5.323819	-0.357067	2.085119
С	3.869483	0.130651	-3.222604	Н	-6.075947	0.764219	-0.738925
С	2.508572	0.294364	-3.663665	Н	-8.009490	0.117944	-2.187032
С	2.079590	1.585413	-3.270069	Η	-8.281340	-2.284598	-2.801880
С	3.182010	2.242763	-2.636126	Η	-6.611562	-3.911421	-1.967957
С	2.935649	3.078689	-1.582182	Η	-5.762837	4.120655	-1.943963

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Н	-5.250803	6.344631	-0.983062	Н	1.261058	-0.118393	-0.288896
Η	-3.586167	6.477263	0.871361	Н	1.988690	-0.095857	-0.134228
Η	-2.502850	4.382530	1.646157				
(H ₂)	2@ 2						
E = -	- <u>3866.00367</u> 4	7		С	1.613634	-0.849457	-3.686518
$E_{\rm CP}$ =	= -3866.00134	10132286		С	0.254215	-0.510199	-3.617917
				С	-0.152237	0.775437	-3.202809
Chai	rge = 0, Multip	plicity = 1		С	0.764431	1.773651	-2.885524
С	-3.188006	-0.289270	-0.621839	С	0.494448	2.606374	-1.724535
С	-2.546572	-1.217468	-1.492984	С	-0.672968	2.380043	-0.923460
С	-2.130052	-2.465931	-0.907710	С	-0.615415	2.597475	0.485459
С	-2.410830	-2.684324	0.470962	С	0.621488	2.985978	1.072750
С	-3.693202	-2.147044	0.982439	С	0.980359	2.436818	2.353117
С	-1.820735	0.239011	3.309400	С	2.329881	2.228904	2.685077
С	-0.561731	-0.570645	3.497977	С	2.754094	1.000698	3.248440
С	-0.306521	-1.868227	3.185458	С	4.061972	0.710523	2.752512
С	-1.408074	-3.119671	1.312270	С	4.365566	-0.586463	2.423991
С	-0.086468	-3.393289	0.823043	С	3.364020	-1.617848	2.534821
С	0.010847	-3.556246	-0.545998	С	3.514776	-2.508935	1.458954
С	-1.006820	-3.083866	-1.422244	С	4.647532	-2.059995	0.682902
С	-0.347762	-2.615773	-2.597124	С	4.649274	-2.204663	-0.675915
С	-0.738368	-1.427537	-3.146823	С	3.531128	-2.839349	-1.304017
С	-1.796068	-0.699702	-2.525746	С	3.314663	-2.205668	-2.550667
С	-1.389245	0.664519	-2.499602	С	4.269608	-1.135095	-2.672953
С	-1.676972	1.444875	-1.400784	С	3.872497	0.063103	-3.215014
С	-2.717519	0.988199	-0.536511	С	2.513150	0.226527	-3.660992
С	-1.665730	2.007683	1.319856	С	2.090365	1.524747	-3.287629
С	-1.293032	1.437685	2.505171	С	3.194870	2.187082	-2.662727
С	0.066420	1.557968	2.920194	С	2.950824	3.040284	-1.622504
С	0.496726	0.361103	3.501644	С	1.604120	3.228783	-1.138637
С	1.830419	-0.022214	3.496764	С	1.671052	3.409073	0.252662
С	2.102043	-1.373050	3.072201	С	3.052365	3.313442	0.658340
С	1.015595	-2.218123	2.700797	С	3.382347	2.711156	1.845283
С	1.134486	-3.073153	1.567064	С	4.481859	1.789358	1.905831
С	2.398887	-3.139575	0.887437	С	5.231999	1.531310	0.778852
С	2.458265	-3.351225	-0.548846	С	4.926357	2.207934	-0.452657
С	1.259344	-3.496888	-1.238453	С	3.847066	3.075109	-0.506795
С	1.048243	-2.917760	-2.505764	С	5.153207	1.286411	-1.529289
С	2.030139	-2.114568	-3.106038	С	4.313577	1.292867	-2.625871

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2010

С	5.571135	0.032435	-0.963668	С	-3.261386	4.389715	0.870026
С	5.123257	-1.149505	-1.522012	0	-4.291360	-2.628131	1.902817
С	5.603764	0.177761	0.463717	0	-2.907231	-0.002738	3.731717
С	5.162212	-0.858835	1.269994	S	-1.622719	-3.021861	3.059882
С	-4.070240	1.280806	1.530296	Н	-4.365348	1.889606	2.371951
С	-4.220806	-0.863440	0.292926	Н	-5.345787	-0.278086	2.068888
С	-3.019353	1.865350	0.643179	Н	-6.344312	0.655546	-0.503179
С	-4.617382	0.091502	1.364193	Н	-8.236495	-0.090839	-1.952313
С	-3.540789	3.221670	0.178690	Н	-8.238315	-2.442171	-2.784893
С	-5.412741	-1.267159	-0.565836	Н	-6.353468	-3.918725	-2.150707
С	-6.405429	-0.353690	-0.878336	Н	-5.501192	4.257523	-2.171195
С	-7.442487	-0.772107	-1.688012	Н	-5.095588	6.440348	-1.074089
С	-7.445610	-2.073156	-2.154753	Н	-3.621831	6.497584	0.938918
С	-6.395044	-2.897817	-1.798575	Н	-2.612981	4.369979	1.731742
Ν	-5.395988	-2.507605	-1.024069	Н	0.086009	-0.586701	-0.211620
Ν	-4.335060	3.186765	-0.879645	Н	-0.154519	-0.518659	0.487438
С	-4.864453	4.323736	-1.300016	Н	2.606849	0.077521	-0.428462
С	-4.640418	5.543030	-0.687828	Н	2.377043	0.400687	0.201591
С	-3.823146	5.570296	0.425164				

10. References

- 1 Y. Murata, M. Murata, K. Komatsu, Chem. Eur. J., 2003, 9, 1600.
- 2 M. Murata, Y. Murata, K. Komatsu, J. Am. Chem. Soc., 2006, **128**, 8024.
- 3 Y. Murata, S. Maeda, M. Murata, K. Komatsu, J. Am. Chem. Soc., 2008, 130, 6702.
- 4 M. Murata, S. Maeda, Y. Morinaka, Y. Murata, K. Komatsu, J. Am. Chem. Soc., 2008, **130**, 15800.